Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Airy but Thirsty

26.02.2013
Ultralight, flexible, fire-resistant carbon nanotube aerogels from bacterial cellulose

They can absorb vast amounts of oil or organic compounds, yet they are nearly as light as air: highly porous solids made of a three-dimensional network of carbon nanotubes.

In the journal Angewandte Chemie, Chinese scientists have now introduced a simple technique for the production of these ultralight, flexible, fire-resistant aerogels. Their method begins with bacterial cellulose as an inexpensive starting material. Their fibrous lightweights can "suck" organic contaminants from polluted water and could possibly be used as pressure sensors.

Their unique properties—low density, highy porosity, high specific surface, and high electrical conductivity—make carbon aerogels promising new materials. They could be used as catalyst supports, electrodes for supercapacitors, adsorbents, and gas sensors, as well as for synthetic muscles. However, there is still no simple, industrially and environmentally friendly method for the production of these attractive lightweights.

A team led by Shu-Hong Yu at the Hefei National Laboratory for Physical Sciences at Micrscale (HFNL), Univeristy of Science and Technology of China is pursuing their production from biomass. They selected bacterial cellulose, a commonly used, inexepensive, nontoxic form of biomass consisting of a tangled network of cellulose nanofibers. This material can easily be produced on an industrial scale through microbial fermentation.

The researchers trimmed off small pieces of the tangled cellulose nanofibers. These were freeze-dried and then pyrolyzed at 1300 °C under argon. This converts the cellulose into graphitic carbon. The density decreases but the network structure remains intact. The result is a black, ultralight, mechanically stable aerogel. Because it is porous and highly hydrophobic, it can adsorb organic solvents and oils—up to 106 to 312 times its own weight.

It draws oil out of an oil/water mixture with high efficiency and selectivity, leaving behind pure water. This makes the new aerogel an ideal candidate for cleaning up oil spills or sucking up nonpolar industrial pollutants. The absorbed substances can easily be removed from the gel through distillation or combustion, allowing the gel to be used again.

The extraordinary heat- and fire-resistence of this material are particularaly noteworthy: repeated treatment with the flame of a torch caused no changes in its form or inner three-dimensional pore structure.

The high electrical conductivity of the aerogel also suggests the possibility of electronic applications. The material has high mechanical flexibility. It can be compressed to about 10 % of its original volume and will subsequently expand back to nearly its original shape. Its conductivity decreases in a nearly linear fashion with increasing compression, which could allow the aerogel to be used as a pressure sensor.

About the Author
Professor Shu-Hong Yu is a Full professor at the Hefei National Laboratory for Physical Sciences at Micrscale (HFNL), University of Science and Technology (USTC), China. He is the Head of the Division of Nanomaterials & Chemistry, and also acting as the Deputy Dean of the School of Chemistry & Materials. He is the recipient of the Roy-Somiya Medal of the International Solvothermal and Hydrothermal Association (ISHA) (2010), Chem Soc Rev Emerging Investigator Award (2010) by the Royal Society of Chemistry (UK). His main specialty includes controlled synthesis of new functional nanoparticles, and macroscopic-scale assembly of nanoscale building blocks, and their applications in energy storage, energy conversion, environment protection and other sustainable application systems.
Author: Shu-Hong Yu, University of Science and Technology of China, Hefei (P.R. China), http://staff.ustc.edu.cn/~yulab/
Title: Ultralight, Flexible, and Fire-Resistant Carbon Nanofiber Aerogels from Bacterial Cellulose

Angewandte Chemie International Edition, Permalink to the article: http://dx.doi.org/10.1002/anie.201209676

Shu-Hong Yu | Angewandte Chemie
Further information:
http://pressroom.angewandte.org

More articles from Life Sciences:

nachricht Researchers uncover protein-based “cancer signature”
05.12.2016 | Universität Basel

nachricht The Nagoya Protocol Creates Disadvantages for Many Countries when Applied to Microorganisms
05.12.2016 | Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NASA's AIM observes early noctilucent ice clouds over Antarctica

05.12.2016 | Earth Sciences

Shape matters when light meets atom

05.12.2016 | Physics and Astronomy

Researchers uncover protein-based “cancer signature”

05.12.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>