Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

2 vortex trails with 1 stroke

26.02.2013
UC Riverside research shows hovering hummingbirds generate two trails of vortices under their wings, challenging 1-vortex consensus

As of today, the Wikipedia entry for the hummingbird explains that the bird's flight generates in its wake a single trail of vortices that helps the bird hover.

But after conducting experiments with hummingbirds in the lab, researchers at the University of California, Riverside propose that the hovering hummingbird instead produces two trails of vortices — one under each wing per stroke — that help generate the aerodynamic forces required for the bird to power and control its flight.

The results of the study could find wide application in aerospace technology and the development of unmanned vehicles for medical surveillance after natural disasters.

The researchers used high-speed image sequences — 500 frames per second — of hummingbirds hover-feeding within a white plume (emitted by the heating of dry ice) to study the vortex wake from multiple perspectives. They also used particle image velocimetry (PIV), a flow-measuring method used in fluid mechanics, to quantitatively analyze the flow around the hummingbirds. PIV allowed the researchers to record the particles surrounding the birds and extract velocity fields.

The films and velocity fields showed two distinct jets of downwards airflow — one under each wing of the hummingbird. They also revealed that vortex loops around each jet are shed during each upstroke and downstroke.

The researchers therefore propose in their paper published online last month in the journal Experiments in Fluids that the hummingbird's two wings form bilateral vortex loops during each wing stroke, which is advantageous for maneuverability.

"Previous studies have indicated that slow-flying bats and faster flying birds produced different structures in their wakes," said Douglas Altshuler, formerly an assistant professor of biology at UC Riverside, whose lab led the research. "We have been investigating the wake structure of hovering hummingbirds because this allows us to decouple the effects of different types of wings — bat versus bird — from different forward flight speeds.

Hummingbirds each weigh 2-20 grams. Because they can hover with high precision, they are able to drink nectar from flowers without any jiggling movement to their bodies. Besides using upstrokes and downstrokes, hummingbirds can rotate their wings. They can even flap their wings from front to back with a 180-degree amplitude.

"We began this study to investigate how the hummingbird used its tail while hovering," said Marko Princevac, an associate professor of mechanical engineering and a coauthor of the research paper. "After all, many insects also hover, but they have no tail. Instead, however, our research showed something interesting about the hummingbird's wings: the bilateral vortex structure. Hummingbirds hovering should cost a lot of energy but these birds are able to hover for long periods of time. Ideally, unmanned vehicles need to be operated with a very limited energy supply, which is why understanding how the hummingbird maximizes its use of energy is tremendously beneficial."

Sam Pournazeri, a former Ph.D. graduate student in Princevac's lab and a co-author on the paper, explained that in a downstroke, the air pressure difference developed as a result of wing movement creates flow from the bottom to the top of the wing. The result is a circular movement or vortex.

"Based on theories in fluid mechanics, this vortex should close either on the wing/body or create a loop around it," he said. "It's these loops that provide circulation around the wings and cause the hummingbird to overcome its weight. Hovering requires the bird to create a lift that cancels its body weight. Although the two-vortex structure we observed increases the hummingbird's energy consumption, it provides the bird a big advantage: a lot more maneuverability."

Next, the research team plans to study the hummingbird in a wind tunnel to closely observe how the bird transitions from hovering to forward motion, and vice versa.

"Current technology is not successfully mimicking how living things fly," Princevac said. "Drones don't hover, and must rely on forward motion. Research done using hummingbirds, like ours, can inform the development of the next generation of drones."

The research was funded by a grant from the National Science Foundation to Altshuler, now a faculty member at the University of British Columbia, Canada.

Paolo S. Segre, a former UCR graduate student working with Altshuler at the University of British Columbia, also participated in the study. Pournazeri and Segre contributed equally to the research.

The University of California, Riverside is a doctoral research university, a living laboratory for groundbreaking exploration of issues critical to Inland Southern California, the state and communities around the world. Reflecting California's diverse culture, UCR's enrollment has exceeded 21,000 students. The campus will open a medical school in 2013 and has reached the heart of the Coachella Valley by way of the UCR Palm Desert Center. The campus has an annual statewide economic impact of more than $1 billion. A broadcast studio with fiber cable to the AT&T Hollywood hub is available for live or taped interviews. UCR also has ISDN for radio interviews. To learn more, call (951) UCR-NEWS.

Iqbal Pittawala | EurekAlert!
Further information:
http://www.ucr.edu

More articles from Life Sciences:

nachricht Researchers uncover protein-based “cancer signature”
05.12.2016 | Universität Basel

nachricht The Nagoya Protocol Creates Disadvantages for Many Countries when Applied to Microorganisms
05.12.2016 | Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

IHP presents the fastest silicon-based transistor in the world

05.12.2016 | Power and Electrical Engineering

InLight study: insights into chemical processes using light

05.12.2016 | Materials Sciences

High-precision magnetic field sensing

05.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>