Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Destroyed Coastal Habitats Produce Significant Greenhouse Gas

07.09.2012
Destruction of coastal habitats may release as much as 1 billion tons of carbon into the atmosphere each year, 10 times higher than previously reported, according to a new Duke led study.

Published online this week in PLOS ONE, the analysis provides the most comprehensive estimate of global carbon emissions from the loss of these coastal habitats to date: 0.15 to 1.2 billion tons. It suggests there is a high value associated with keeping these coastal-marine ecosystems intact as the release of their stored carbon costs roughly $6-$42 billion annually.

"On the high end of our estimates, emissions are almost as much as the carbon dioxide emissions produced by the world's fifth-largest emitter, Japan," said Brian Murray, director for economic analysis at Duke's Nicholas Institute for Environmental Policy Solutions. "This means we have previously ignored a source of greenhouse gas emissions that could rival the emissions of many developed nations."

This carbon, captured through biological processes and stored in the sediment below mangroves, sea grasses and salt marshes, is called "blue carbon." When these wetlands are drained and destroyed, the sediment layers below begin to oxidize. Once this soil, which can be many feet deep, is exposed to air or ocean water it releases carbon dioxide over days or years.

"There's so little data out there on how much carbon might be released when these ecosystems are disturbed," said Oregon State University's Daniel Donato, co-lead author of the paper. "With this analysis we tried to reduce some of that uncertainty by identifying some 'bookends' that represent the lowest and highest probable emissions, given the information available."

The PLOS ONE study looked at the potentially massive amount of carbon tucked away from the atmosphere by the slow accretion, over hundreds to thousands of years, of soils beneath these habitats. Previous work in the area has focused only on the amount of carbon stored in these systems and not what happens when these systems are degraded or destroyed and the stored carbon is released.

"These coastal ecosystems are a tiny ribbon of land, only 6 percent of the land area covered by tropical forest, but the emissions from their destruction are nearly one-fifth of those attributed to deforestation worldwide," said Linwood Pendleton, the study's co-lead author and director of the Ocean and Coastal Policy Program at the Nicholas Institute. "One hectare, or roughly two acres of coastal marsh, can contain the same amount of carbon as 488 cars produce in a year. Comparatively, destroying a hectare of mangroves could produce as much greenhouse gas emissions as cutting down three to five hectares of tropical forest."

The critical role of these ecosystems for carbon sequestration has been overlooked, the study said. These coastal habitats could be protected and climate change combated if a system—much like what is being done to protect trees through Reducing Emissions from Deforestation and Forest Degradation (REDD)—were implemented. Such a policy would assign credits to carbon stored in these habitats and provide economic incentive if they are left intact.

"Blue carbon ecosystems provide a plethora of benefits to humans: they support fisheries, buffer coasts from floods and storms, and filter coastal waters from pollutants," said Emily Pidgeon, senior director of Strategic Marine Initiatives at Conservation International and co-chair of the Blue Carbon Initiative. "Economic incentives to reverse these losses may help preserve these benefits and serve as a viable part of global efforts to reduce greenhouse gases and address climate change."

The work was funded by Linden Trust for Conservation and Roger and Victoria Sant. To review the paper, "Estimating Global ‘Blue Carbon' Emissions from Conversion and Degradation of Vegetated Coastal Ecosystems," visit http://dx.plos.org/10.1371/journal.pone.0043542.

The study was led by Linwood Pendleton of Duke's Nicholas Institute for Environmental Policy Solutions and Dan Donato of Oregon State University. Others from Duke's Nicholas Institute, Conservation International, ESA Phillip Williams & Associates, U.S. Environmental Protection Agency, School of Public and Environmental Affairs, Florida International University, Oregon State University, Mediterranean Institute for Advanced Studies, Smithsonian Environmental Research Center, International Union for Conservation of Nature and the Ocean Conservancy contributed as co-authors.

Photos Available: https://ci.tandemvault.com/lightboxes/NOOc1oIlQ?tc=BaDJzVXqK.

CITATION: "Estimating Global ‘Blue Carbon' Emissions from Conversion and Degradation of Vegetated Coastal Ecosystems," Linwood Pendleton, Daniel C. Donato, Brian C. Murray, Stephen Crooks, W. Aaron Jenkins, Samantha Sifleet, Christopher Craft, James W. Fourqurean, J. Boone Kauffman, Nuria Marba, Patrick Megonigal, Emily Pidgeon, Dorothee Herr, David Gordon, Alexis Baldera. PLOS ONE, Sept. 4, 2012. DOI: 10.1371/journal.pone.0043542.

Note to broadcast editors: Duke provides an on-campus satellite uplink facility for live or pre-recorded television interviews. We are also equipped with ISDN connectivity for radio interviews. Broadcast reporters should contact Scott Wells at (919) 660-1741 or James Todd (919) 681-8061 to arrange an interview.

Erin McKenzie | EurekAlert!
Further information:
http://www.duke.edu

More articles from Ecology, The Environment and Conservation:

nachricht How to detect water contamination in situ?
22.09.2016 | Tomsk Polytechnic University (TPU)

nachricht Quantifying the chemical effects of air pollutants on oxidative stress and human health
12.09.2016 | Max-Planck-Institut für Chemie

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: OLED microdisplays in data glasses for improved human-machine interaction

The Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP has been developing various applications for OLED microdisplays based on organic semiconductors. By integrating the capabilities of an image sensor directly into the microdisplay, eye movements can be recorded by the smart glasses and utilized for guidance and control functions, as one example. The new design will be debuted at Augmented World Expo Europe (AWE) in Berlin at Booth B25, October 18th – 19th.

“Augmented-reality” and “wearables” have become terms we encounter almost daily. Both can make daily life a little simpler and provide valuable assistance for...

Im Focus: Artificial Intelligence Helps in the Discovery of New Materials

With the help of artificial intelligence, chemists from the University of Basel in Switzerland have computed the characteristics of about two million crystals made up of four chemical elements. The researchers were able to identify 90 previously unknown thermodynamically stable crystals that can be regarded as new materials. They report on their findings in the scientific journal Physical Review Letters.

Elpasolite is a glassy, transparent, shiny and soft mineral with a cubic crystal structure. First discovered in El Paso County (Colorado, USA), it can also be...

Im Focus: Complex hardmetal tools out of the 3D printer

For the first time, Fraunhofer IKTS shows additively manufactured hardmetal tools at WorldPM 2016 in Hamburg. Mechanical, chemical as well as a high heat resistance and extreme hardness are required from tools that are used in mechanical and automotive engineering or in plastics and building materials industry. Researchers at the Fraunhofer Institute for Ceramic Technologies and Systems IKTS in Dresden managed the production of complex hardmetal tools via 3D printing in a quality that are in no way inferior to conventionally produced high-performance tools.

Fraunhofer IKTS counts decades of proven expertise in the development of hardmetals. To date, reliable cutting, drilling, pressing and stamping tools made of...

Im Focus: Launch of New Industry Working Group for Process Control in Laser Material Processing

At AKL’16, the International Laser Technology Congress held in May this year, interest in the topic of process control was greater than expected. Appropriately, the event was also used to launch the Industry Working Group for Process Control in Laser Material Processing. The group provides a forum for representatives from industry and research to initiate pre-competitive projects and discuss issues such as standards, potential cost savings and feasibility.

In the age of industry 4.0, laser technology is firmly established within manufacturing. A wide variety of laser techniques – from USP ablation and additive...

Im Focus: New laser joining technologies at ‘K 2016’ trade fair

Every three years, the plastics industry gathers at K, the international trade fair for plastics and rubber in Düsseldorf. The Fraunhofer Institute for Laser Technology ILT will also be attending again and presenting many innovative technologies, such as for joining plastics and metals using ultrashort pulse lasers. From October 19 to 26, you can find the Fraunhofer ILT at the joint Fraunhofer booth SC01 in Hall 7.

K is the world’s largest trade fair for the plastics and rubber industry. As in previous years, the organizers are expecting 3,000 exhibitors and more than...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Experts from industry and academia discuss the future mobile telecommunications standard 5G

23.09.2016 | Event News

ICPE in Graz for the seventh time

20.09.2016 | Event News

Using mathematical models to understand our brain

16.09.2016 | Event News

 
Latest News

Chains of nanogold – forged with atomic precision

23.09.2016 | Life Sciences

New leukemia treatment offers hope

23.09.2016 | Health and Medicine

Self-assembled nanostructures hit their target

23.09.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>