Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Producing High-Tech Steel Cheaply and Efficiently

A new plant for desulfurizing pig iron is reducing the costs of steel production.

Developed by Siemens, this innovative process makes it possible to more precisely dose the various desulfurizing agents that are injected into the molten metal and do so more economically.

The technology is based on the patented Simetal Feldhaus process, which has been adopted and further developed by Siemens. A plant of this type is currently under construction in Brazil at steel producer ArcelorMittal Monlevade S.A..

Pig iron is produced by heating iron ore together with coke and various additives in a blast furnace. Sulfur present in these materials typically results in a sulfur content in the pig iron of between 200 and 600 parts per million (ppm). Depending on the grade of steel required, this sulfur content must be reduced - to as little as 10 ppm for modern high-performance steels.

For this purpose, desulfurizing agents such as burnt lime, calcium carbide, and magnesium are injected into the molten metal. Of the three agents, magnesium is the most effective but also the most expensive. A higher concentration of magnesium is used whenever a large reduction in sulfur content is required and processing time is limited. Allowing for variations in the precise process parameters, the production of one metric ton of steel typically requires the addition of around 0.7 kilograms of magnesium and just under three kilograms of burnt lime. A plant with an annual output of one million metric tons of steel will therefore face production costs of over €1.5 million for magnesium alone.

The desulfurizing agents are added individually or in combination by means of a carrier gas injected into the molten metal via a so-called lance. Here the major challenge consists in maintaining a precise, predefined flow of the individual agents despite their different physical characteristics: burnt lime and calcium carbide are fine powders; magnesium is a granulate. To ensure precise dosing of the magnesium granules, Siemens has adopted the Feldhaus process, which has been in use at a Düsseldorf steel plant since 1999. Unlike the conventional pressure vessel-based techniques used to inject powder agents, this pneumatic conveying process ensures precise dosing of the magnesium.

In addition, the desulfurizing plant has been enhanced in such a way that the dosage of the powder agents can be controlled more precisely. This has involved the redesign of the containers in order to ensure that the powders flow evenly into the stream of gas.

The new plant in Brazil will make it possible to use desulfurizing agents more cost-effectively, control the sulfur concentrations in the end product with greater precision, and reduce the magnesium requirement of a steelworks by around 10 percent.

Dr. Norbert Aschenbrenner | Siemens InnovationNews
Further information:

More articles from Machine Engineering:

nachricht Process-Integrated Inspection for Ultrasound-Supported Friction Stir Welding of Metal Hybrid-Joints
27.09.2016 | Fraunhofer-Institut für Zerstörungsfreie Prüfverfahren IZFP

nachricht Lightweight robots in manual assembly
13.09.2016 | Fraunhofer-Institut für Arbeitswirtschaft und Organisation IAO

All articles from Machine Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

How nanoscience will improve our health and lives in the coming years

27.10.2016 | Materials Sciences

OU-led team discovers rare, newborn tri-star system using ALMA

27.10.2016 | Physics and Astronomy

'Neighbor maps' reveal the genome's 3-D shape

27.10.2016 | Life Sciences

More VideoLinks >>>