Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Outsmarting nature during disasters

18.02.2014
Instead of winging it, planners need to think carefully about costs and benefits

The dramatic images of natural disasters in recent years, including hurricanes Katrina and Sandy and the Tohoku, Japan, earthquake and tsunami, show that nature, not the people preparing for hazards, often wins the high-stakes game of chance.

"We're playing a high-stakes game against nature without thinking about what we're doing," geophysicist Seth Stein of Northwestern University said. "We're mostly winging it instead of carefully thinking through the costs and benefits of different strategies. Sometimes we overprepare, and sometimes we underprepare."

Stein will discuss his research in a presentation titled "How Much Natural Hazard Mitigation is Enough?" at the American Association for the Advancement of Science (AAAS) annual meeting in Chicago. His presentation is part of the symposium "Hazards: What Do We Build For?" to be held from 9:45 a.m. to 12:45 p.m. Central Standard Time Monday, Feb. 17, in Grand Ballroom B of the Hyatt Regency Chicago.

Stein is the William Deering Professor of Geological Sciences in Northwestern's Weinberg College of Arts and Sciences. He is the author of a new book, "Playing Against Nature: Integrating Science and Economics to Mitigate Natural Hazards in an Uncertain World" (Wiley, 2014) and the book "Disaster Deferred: A New View of Earthquake Hazards in the New Madrid Seismic Zone" (Columbia University Press, 2010).

Sometimes nature surprises us when an earthquake, hurricane or flood is bigger or has greater effects than expected. In other cases, nature outsmarts us, doing great damage despite expensive mitigation measures or causing us to divert limited resources to mitigate hazards that are overestimated.

"To do better we need to get smarter," Stein said. "This means thoughtfully tackling the tough questions about how much natural hazard mitigation is enough. Choices have to be made in a very uncertain world."

Stein's talk will use general principles and case studies to explore how communities can do better by taking an integrated view of natural hazards issues, rather than treating the relevant geoscience, engineering, economics and policy formulation separately.

Some of the tough questions include:

• How should a community allocate its budget between measures that could reduce the effect of future natural disasters and many other applications, some of which could do more good? For example, how to balance making schools earthquake resistant with hiring teachers to improve instruction?

• Does it make more sense to build levees to protect against floods or to prevent development in the areas at risk?

• Would more lives be saved by making hospitals earthquake resistant or by using the funds for patient care?

The choice is difficult because although science has learned a lot about natural hazards, Stein says, our ability to predict the future is much more limited than often assumed. Much of the problem comes from the fact that formulating effective natural hazard policy involves combining science, economics and risk analysis to analyze a problem and explore costs and benefits of different options in situations where the future is very uncertain.

Because mitigation policies are typically chosen without such analysis -- often by a government mandate that does not consider the costs to the affected communities -- the results are often disappointing.

Megan Fellman | EurekAlert!
Further information:
http://www.northwestern.edu/newscenter

More articles from Earth Sciences:

nachricht Predicting unpredictability: Information theory offers new way to read ice cores
07.12.2016 | Santa Fe Institute

nachricht Sea ice hit record lows in November
07.12.2016 | University of Colorado at Boulder

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>