Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Outsmarting nature during disasters

18.02.2014
Instead of winging it, planners need to think carefully about costs and benefits

The dramatic images of natural disasters in recent years, including hurricanes Katrina and Sandy and the Tohoku, Japan, earthquake and tsunami, show that nature, not the people preparing for hazards, often wins the high-stakes game of chance.

"We're playing a high-stakes game against nature without thinking about what we're doing," geophysicist Seth Stein of Northwestern University said. "We're mostly winging it instead of carefully thinking through the costs and benefits of different strategies. Sometimes we overprepare, and sometimes we underprepare."

Stein will discuss his research in a presentation titled "How Much Natural Hazard Mitigation is Enough?" at the American Association for the Advancement of Science (AAAS) annual meeting in Chicago. His presentation is part of the symposium "Hazards: What Do We Build For?" to be held from 9:45 a.m. to 12:45 p.m. Central Standard Time Monday, Feb. 17, in Grand Ballroom B of the Hyatt Regency Chicago.

Stein is the William Deering Professor of Geological Sciences in Northwestern's Weinberg College of Arts and Sciences. He is the author of a new book, "Playing Against Nature: Integrating Science and Economics to Mitigate Natural Hazards in an Uncertain World" (Wiley, 2014) and the book "Disaster Deferred: A New View of Earthquake Hazards in the New Madrid Seismic Zone" (Columbia University Press, 2010).

Sometimes nature surprises us when an earthquake, hurricane or flood is bigger or has greater effects than expected. In other cases, nature outsmarts us, doing great damage despite expensive mitigation measures or causing us to divert limited resources to mitigate hazards that are overestimated.

"To do better we need to get smarter," Stein said. "This means thoughtfully tackling the tough questions about how much natural hazard mitigation is enough. Choices have to be made in a very uncertain world."

Stein's talk will use general principles and case studies to explore how communities can do better by taking an integrated view of natural hazards issues, rather than treating the relevant geoscience, engineering, economics and policy formulation separately.

Some of the tough questions include:

• How should a community allocate its budget between measures that could reduce the effect of future natural disasters and many other applications, some of which could do more good? For example, how to balance making schools earthquake resistant with hiring teachers to improve instruction?

• Does it make more sense to build levees to protect against floods or to prevent development in the areas at risk?

• Would more lives be saved by making hospitals earthquake resistant or by using the funds for patient care?

The choice is difficult because although science has learned a lot about natural hazards, Stein says, our ability to predict the future is much more limited than often assumed. Much of the problem comes from the fact that formulating effective natural hazard policy involves combining science, economics and risk analysis to analyze a problem and explore costs and benefits of different options in situations where the future is very uncertain.

Because mitigation policies are typically chosen without such analysis -- often by a government mandate that does not consider the costs to the affected communities -- the results are often disappointing.

Megan Fellman | EurekAlert!
Further information:
http://www.northwestern.edu/newscenter

More articles from Earth Sciences:

nachricht Volcanic eruption masked acceleration in sea level rise
26.08.2016 | National Science Foundation

nachricht Biomass turnover time in ecosystems is halved by land use
23.08.2016 | Alpen-Adria-Universität Klagenfurt

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Virtual Reality: 3D Human Body Reconstruction from Fraunhofer HHI digitizes Human Beings

Scientists at the Fraunhofer Institute for Telecommunications, Heinrich Hertz Institute, HHI have developed a method by which the realistic image of a person can be transmitted into a virtual world. The 3D Human Body Reconstruction Technology captures real persons with multiple cameras at the same time and creates naturally moving dynamic 3D models. At this year’s trade fairs IFA in Berlin (Hall 11.1, Booth 3) and IBC in Amsterdam (Hall 8, Booth B80) Fraunhofer HHI will show this new technology.

Fraunhofer HHI researchers have developed a camera system that films people with a perfect three-dimensional impression. The core of this system is a stereo...

Im Focus: Streamlining accelerated computing for industry

PyFR code combines high accuracy with flexibility to resolve unsteady turbulence problems

Scientists and engineers striving to create the next machine-age marvel--whether it be a more aerodynamic rocket, a faster race car, or a higher-efficiency jet...

Im Focus: X-ray optics on a chip

Waveguides are widely used for filtering, confining, guiding, coupling or splitting beams of visible light. However, creating waveguides that could do the same for X-rays has posed tremendous challenges in fabrication, so they are still only in an early stage of development.

In the latest issue of Acta Crystallographica Section A: Foundations and Advances , Sarah Hoffmann-Urlaub and Tim Salditt report the fabrication and testing of...

Im Focus: Piggyback battery for microchips: TU Graz researchers develop new battery concept

Electrochemists at TU Graz have managed to use monocrystalline semiconductor silicon as an active storage electrode in lithium batteries. This enables an integrated power supply to be made for microchips with a rechargeable battery.

Small electrical gadgets, such as mobile phones, tablets or notebooks, are indispensable accompaniments of everyday life. Integrated circuits in the interiors...

Im Focus: UCI physicists confirm possible discovery of fifth force of nature

Light particle could be key to understanding dark matter in universe

Recent findings indicating the possible discovery of a previously unknown subatomic particle may be evidence of a fifth fundamental force of nature, according...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

The energy transition is not possible without Geotechnics

25.08.2016 | Event News

New Ideas for the Shipping Industry

24.08.2016 | Event News

A week of excellence: 22 of the world’s best computer scientists and mathematicians in Heidelberg

12.08.2016 | Event News

 
Latest News

Cancer: Molecularly shutting down cancer cachexia

31.08.2016 | Life Sciences

Robust fuel cell heating unit developed

31.08.2016 | Power and Electrical Engineering

Algorithms Offer Insight into Cellular Development

31.08.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>