Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Materials science brings new forest product opportunities

02.06.2006
Wood fibres turn up in a wide range of products. In addition to traditional paper and wood-based materials, they are also used for example in the food, textile and pharmaceutical industries. The scope of application of wood fibre could, however, be vastly broader than it is at present. With this objective in sight, new avenues are being opened up by cellulose-based nanofibres, which can be used to produce extremely strong and modifiable materials. These efforts are backed by growing pressures such as environmental requirements which lend ever stronger support to the demand for wider utilisation of new natural, fibre-based materials in future.

“Forest cluster companies operating in Finland are on the look out for new forest products. In order to be able to meet the challenges of these companies we need to improve the current level of know-how in wood-based products and wood processing at molecular level. New territory has been charted for example in the areas of composite and nanomaterials,” says Professor Janne Laine of the Helsinki University of Technology’s Department of Forest Products Technology.

Interest in cellulose-based nanofibres is primarily driven by its environmental value as a biomaterial. It is also known that nanomaterials can be used, for example, to achieve strength properties which are not attainable with particles of bigger size classes. Furthermore, the smaller the particle is, the bigger the surface area, which in turn increases the desired interactivity with other materials.

“One of the main application targets for new materials is the car industry, which wants to use lightweight cellulose fibres in car interior panelling. Estimates in terms of volume of the natural fibre requirement of the European car industry in 2010 are extremely substantial,” says Laine.

Professor Laine’s research team is one of five teams involved in examining and developing cellulose-based nanofibres as part of the Finnish-Swedish Wood Material Science and Engineering research programme.

Research demonstrates the versatility of wood fibre

According to Professor Janne Laine, the Nanostructured Cellulose Products research project has shown that wood fibre can be used to make an extremely versatile range of materials, both for traditional wood processing industry products as well as for totally new applications.

Cellulose fibres (30 micrometers wide, 2–3 millimetres long) consist of nanometre-scale microfibrils (4 nm wide, 100–200 nm long).

The chief objective of the project has been to produce uniform quality nanofibre (microfibrillated cellulose, MFC) from cellulose fibres by combining enzymatic or chemical treatment with mechanical processing. The second objective has been to attempt to functionalise the surfaces of the microfibrils, e.g. by means of polymers in order to be able to utilise the converted fibrils in as many materials as possible. The third objective has been to demonstrate how cellulose fibrils can give totally new properties to a range of different materials.

The project has achieved an 80 percent reduction in the energy requirement of microfibrillar cellulose manufacture as compared to levels formerly claimed in literature. In addition, enzymatic pre-treatment combined with specific mechanical treatments has produced microfibrils of extremely high and uniform quality.

Boosting material conductivity, strength, elasticity, lightness and self-cleaning properties

“We’ve succeeded in modifying the surfaces of microfibrils e.g. by means of different polymers, which has, for instance, enabled us to make their surfaces more electrically charged. Microfibrils give considerable toughness and strength to traditional paper products even in small quantities. Correspondingly, microfibrils, as so-called nanocomposite structures, form an extremely high-strength material (e.g. film) the plasticity (elasticity) of which is possible to regulate for example by means of starch,” says Laine.

“Cellulose microfibrils can also be used to make ultra-light materials. By combining fibrils with conductive polymers, we’ve been able to make cellulose based structures which conduct electricity. It’s also been possible to coat microfibrils with a thin layer of titanium dioxide, which makes the material photocatalytically active. Titanium dioxide coated microfibrillar cellulose could be used, for instance, in solar cells and applications in which self-cleaning surfaces are needed, such as filters.”

Leena Vahakyla | alfa
Further information:
http://www.aka.fi
http://www.aka.fi/eng

More articles from Agricultural and Forestry Science:

nachricht Farming with forests
23.09.2016 | University of Illinois College of Agricultural, Consumer and Environmental Sciences (ACES)

nachricht Ecological intensification of agriculture
09.09.2016 | Julius-Maximilians-Universität Würzburg

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New welding process joins dissimilar sheets better

Friction stir welding is a still-young and thus often unfamiliar pressure welding process for joining flat components and semi-finished components made of light metals.
Scientists at the University of Stuttgart have now developed two new process variants that will considerably expand the areas of application for friction stir welding.
Technologie-Lizenz-Büro (TLB) GmbH supports the University of Stuttgart in patenting and marketing its innovations.

Friction stir welding is a still-young and thus often unfamiliar pressure welding process for joining flat components and semi-finished components made of...

Im Focus: First quantum photonic circuit with electrically driven light source

Optical quantum computers can revolutionize computer technology. A team of researchers led by scientists from Münster University and KIT now succeeded in putting a quantum optical experimental set-up onto a chip. In doing so, they have met one of the requirements for making it possible to use photonic circuits for optical quantum computers.

Optical quantum computers are what people are pinning their hopes on for tomorrow’s computer technology – whether for tap-proof data encryption, ultrafast...

Im Focus: OLED microdisplays in data glasses for improved human-machine interaction

The Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP has been developing various applications for OLED microdisplays based on organic semiconductors. By integrating the capabilities of an image sensor directly into the microdisplay, eye movements can be recorded by the smart glasses and utilized for guidance and control functions, as one example. The new design will be debuted at Augmented World Expo Europe (AWE) in Berlin at Booth B25, October 18th – 19th.

“Augmented-reality” and “wearables” have become terms we encounter almost daily. Both can make daily life a little simpler and provide valuable assistance for...

Im Focus: Artificial Intelligence Helps in the Discovery of New Materials

With the help of artificial intelligence, chemists from the University of Basel in Switzerland have computed the characteristics of about two million crystals made up of four chemical elements. The researchers were able to identify 90 previously unknown thermodynamically stable crystals that can be regarded as new materials. They report on their findings in the scientific journal Physical Review Letters.

Elpasolite is a glassy, transparent, shiny and soft mineral with a cubic crystal structure. First discovered in El Paso County (Colorado, USA), it can also be...

Im Focus: Complex hardmetal tools out of the 3D printer

For the first time, Fraunhofer IKTS shows additively manufactured hardmetal tools at WorldPM 2016 in Hamburg. Mechanical, chemical as well as a high heat resistance and extreme hardness are required from tools that are used in mechanical and automotive engineering or in plastics and building materials industry. Researchers at the Fraunhofer Institute for Ceramic Technologies and Systems IKTS in Dresden managed the production of complex hardmetal tools via 3D printing in a quality that are in no way inferior to conventionally produced high-performance tools.

Fraunhofer IKTS counts decades of proven expertise in the development of hardmetals. To date, reliable cutting, drilling, pressing and stamping tools made of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

European Health Forum Gastein 2016 kicks off today

28.09.2016 | Event News

Laser use for neurosurgery and biofabrication - LaserForum 2016 focuses on medical technology

27.09.2016 | Event News

Experts from industry and academia discuss the future mobile telecommunications standard 5G

23.09.2016 | Event News

 
Latest News

The first genome of a coral reef fish

29.09.2016 | Life Sciences

Gentle sensors for diagnosing brain disorders

29.09.2016 | Medical Engineering

Swiss space research reaches for the sky

29.09.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>