Materials Sciences

Materials management deals with the research, development, manufacturing and processing of raw and industrial materials. Key aspects here are biological and medical issues, which play an increasingly important role in this field.

innovations-report offers in-depth articles related to the development and application of materials and the structure and properties of new materials.

Innovative RF-magnetron sputtering process creates homogenous BaTiO3 films for high-tech electronics

Microstructural characterization of BaTiO3 thin films prepared by RF-Magnetron sputtering using sintered targets from high energy ball milled powders

The electronic and optical characteristics of barium titanate (BT) ferroelectric ceramics are of great interest for industrial uses and when grown as thin films they can easily be integrated into modern circuitry. These thin films are commonly prepared by RF- magnetron sputtering using a commercially available BT target as the ma

NIST seeking cure for electronics-killing whiskers

Environmental groups around the world have been campaigning for years to replace lead-containing solders and protective layers on electronic components with non-hazardous metals and alloys. In response, the European Union (EU) will ban the use of lead (and five other hazardous substances) in all electrical and electronic equipment sold in EU nations starting in July 2006. U.S. manufacturers must comply with this requirement in order to market their products overseas.

However, pure ele

UC Davis researchers shed new light on how chemotherapy-induced leukemia develops

Potentially fatal side-effect may be preventable, new study suggests

Topoisomerase II inhibitors are among the most successful chemotherapy drugs used to treat human cancer. But a small percentage of patients treated with these agents recover from their initial malignancy only to develop a second cancer, leukemia.
Researchers at UC Davis Cancer Center have shed new light on this poorly understood process. In a study to be published in the Nov. 22 issue of the journal Leuke

Properties revealed of amorphous carbon thin films prepared by electron-gun evaporation

Massive variations in electrical conductivity observed for amorphous carbon thin films

A great deal of work has been done into understanding the physical properties of amorphous carbon (a-C). These studies have found the relative ratio of different carbon phases strongly determines the physical properties of the material.

In this work, published in AZojomo*, by B. Rebollo-Plata, R. Lozada-Morales, R. Palomino-Merino, J. A. Dávila-PintLe, O. Portillo-Moreno, O. Zelaya

Super high temperature, high wear SiAlON coatings made using innovative production methods

Structural and chemical compositions of Si-Al Oxy-Nitride coatings altered through the use of reactive DC magnetron sputtering

Sialons are ceramics possessing chemical inertness, good thermal shock resistance, and excellent mechanical properties that are retained up to high temperatures. These properties mean sialon systems have found considerable applications in engineering.

Sialons are almost never found as natural minerals and sialon powders must be synthesized. They are

Nanomanufacturing: Systematic study of nanostructure growth yields production ’road map’

Researchers have taken an important step toward high-volume production of new nanometer-scale structures with the first systematic study of growth conditions that affect production of one-dimensional nanostructures from the optoelectronic material cadmium selenide (CdSe).

Using the results from more than 150 different experiments in which temperature and pressure conditions were systematically varied, nanotechnology researchers at the Georgia Institute of Technology created a “roa

Page
1 631 632 633 634 635 682