Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.
Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.
Researchers have discovered a gene that appears to be critical for maintaining a healthy sense of balance in mice. The study, led by a team at Washington University School of Medicine in St. Louis, appears in the April 1 issue of the journal Human Molecular Genetics and online March 24.
“Loss of balance is a significant problem in the elderly because it can lead to dangerous falls and injuries,” says one of the studys principal investigators, David M. Ornitz, M.D., Ph.D., professor of
One of the most powerful tools in today’s biological and medical science is the ability to artificially remove and add bits of DNA to an organism’s genome. This has helped scientists to understand problems caused by defective genes, for example, which have now been linked to thousands of human diseases. So far the technology has been limited to small segments of DNA. But four years ago, Francis Stewart and his colleagues at the European Molecular Biology Laboratory (Heidelberg) developed a new techn
Researchers hope to someday develop an enzyme to repair UV-damaged DNA in humans
Plants, pond scum, and even organisms that live where the sun doesnt shine have something that humans do not — an enzyme that repairs DNA damaged by ultraviolet (UV) light.
Cabell Jonas of Richmond, Va., an undergraduate honors student in biology at Virginia Tech, will report on the molecular details of the DNA-repair enzyme at the 225th national meeting of the American Chemical Society March
Finding an economical way to make a polyester commonly found in many types of bacteria into a plastic with uses ranging from packaging to biomedical devices is a long-held scientific goal. Such a polymer would be a “green” plastic, in that it would be biodegradable.
Geoffrey Coates, a professor of chemistry and chemical biology at Cornell University, Ithaca, N.Y., has partially achieved this goal by discovering a highly efficient chemical route for the synthesis of the polymer, known as po
A team of investigators at Carnegie Mellon University has formed the first hybrid quadruplex of peptide nucleic acids, or PNAs, with DNA, the genetic code. This result opens new opportunities to study the activity of genetic regions occupied by recently described quadruplex DNA structures, as well as providing a new compound that could be used as a biosensor or to block gene activity associated with diseases such as cancer. The research results, published online, will appear in a forthcoming issue o
Could yield biosensors with greater sensitivity, specificity
Scientists at Hebrew University, Israel, in collaboration with researchers at the U.S. Department of Energy’s Brookhaven National Laboratory, have devised a way to use gold nanoparticles as tiny electrical wires to plug enzymes into electrodes. The gold “nanoplugs” help align the molecules for optimal binding and provide a conductive pathway for the flow of electrons. The research, described in the March 21, 2003, issue of