Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Designing a better catalyst for ’artificial photosynthesis’

Scientists studying the conversion of carbon dioxide (CO2) to carbon monoxide (CO) — a crucial step in transforming CO2 to useful organic compounds such as methanol — are trying to mimic what plants do when they convert CO2 and water to carbohydrates and oxygen in the presence of chlorophyll and sunlight. Such “artificial photosynthesis” could produce inexpensive fuels and raw materials for the chemical industry from renewable solar energy. But achieving this goal is no simple task.


Molecule found to be critical for kidney development

By taking advantage of techniques developed in the search for Alzheimer’s treatments, a team of researchers has discovered that a molecule called Notch is essential for the development of critical kidney cells. The study, published online and in the Oct. 15 issue of the journal Development, provides key information about kidney development that could have implications for tissue regeneration.

“Tissue transplantation is fantastic but it would be so much better if we could instead raise o

NC State Geneticists Show Ripple Effects of Gene Mutations

When a plane arrives late to an airport, it affects more than just the frustrated passengers on the tardy plane – the ripple effects could throw the entire day’s timetable off schedule.

Similarly, in a new study, North Carolina State University geneticists have found that changes to genes regulating olfactory behavior in the fruit fly Drosophila melanogaster, a popular insect model for genetics, have far greater implications than previously appreciated.

The study is presented in a p

Reverse reactions helps isolate important intermediate

Scientists at the U.S. Department of Energy’s Brookhaven National Laboratory have used a new way to isolate and study an important intermediate in the epoxidation of olefins such as ethylene: They run the reaction in reverse. By starting with the final products (epoxides) and placing them on the surface of a model catalyst, the scientists are able to use surface chemistry techniques to “catch” the intermediate. Understanding this intermediate may ultimately help the scientists develop improved o

In place fabrication solves organic polymer shortcoming

Just like the manufacturers of silicon electronics, a team of Penn State chemical engineers wants to assemble circuit boards in place, but these circuits are made of conducting organic polymers that pose major fabrication roadblocks.

“We want to build electronic devices like transistors and flexible circuits,” says Dr. Seong Kim, assistant professor of chemical engineering.

Kim and Sudarshan Natarajan, graduate student in chemical engineering, looked at fabricating circuits from po

Glowing Green Slime Shows GM Swaps

Knowing how bacteria of different types swap genes is vitally important to regulators trying to decide how safe genetically modified organisms are, but so far the way genes are transferred naturally is poorly understood. Research presented today, Monday 8 September 2003, by scientists from the University of Manchester Institute of Science and Technology at the Society for General Microbiology’s meeting at UMIST provides some of the missing information.

“We all know that bacteria have an incr

1 4,442 4,443 4,444 4,445 4,446 4,599