Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Artificial intelligence identifies, locates seizures in real-time

30.06.2020

Treating the brain as a network allows researchers to extract more meaningful data from EEGs

Researchers from Washington University in St. Louis' McKelvey School of Engineering have combined artificial intelligence with systems theory to develop a more efficient way to detect and accurately identify an epileptic seizure in real-time.


This gif was recorded during two seizures, one at 2950 seconds, the other at 9200. The top left animation is of EEG signals from three electrodes. The top right is a map of the inferred network. The third animation plots the Fiedler eigenvalue, the single value used to detect seizures using the network inference technique.

Credit: Li Lab

Their results were published May 26 in the journal Scientific Reports.

The research comes from the lab of Jr-Shin Li, professor in the Preston M. Green Department of Electrical & Systems Engineering, and was headed by Walter Bomela, a postdoctoral fellow in Li's lab.

Also on the research team were Shuo Wang, a former student of Li's and now assistant professor at the University of Texas at Arlington, and Chu-An Chou of Northeastern University.

"Our technique allows us to get raw data, process it and extract a feature that's more informative for the machine learning model to use," Bomela said. "The major advantage of our approach is to fuse signals from 23 electrodes to one parameter that can be efficiently processed with much less computing resources."

In brain science, the current understanding of most seizures is that they occur when normal brain activity is interrupted by a strong, sudden hyper-synchronized firing of a cluster of neurons. During a seizure, if a person is hooked up to an electroencephalograph -- a device known as an EEG that measures electrical output -- the abnormal brain activity is presented as amplified spike-and-wave discharges.

"But the seizure detection accuracy is not that good when temporal EEG signals are used," Bomela said. The team developed a network inference technique to facilitate detection of a seizure and pinpoint  its location with improved accuracy.

During an EEG session, a person has electrodes attached to different spots on his/her head, each recording electrical activity around that spot.

"We treated EEG electrodes as nodes of a network. Using the recordings (time-series data) from each node, we developed a data-driven approach to infer time-varying connections in the network or relationships between nodes," Bomela said. Instead of looking solely at the EEG data -- the peaks and strengths of individual signals -- the network technique considers relationships. "We want to infer how a brain region is interacting with others," he said.

It is the sum of these relationships that form the network.

Once you have a network, you can measure its parameters holistically. For instance, instead of measuring the strength of a single signal, the overall network can be evaluated for strength. There is one parameter, called the Fiedler eigenvalue, which is of particular use. "When a seizure happens, you will see this parameter start to increase," Bomela said.

And in network theory, the Fiedler eigenvalue is also related to a network's synchronicity -- the bigger the value the more the network is synchronous. "This agrees with the theory that during seizure, the brain activity is synchronized," Bomela said.

A bias toward synchronization also helps eliminate artifact and background noise. If a person, for instance, scratches their arm, the associated brain activity will be captured on some EEG electrodes or channels. It will not, however, be synchronized with seizure activity. In that way, this network structure inherently reduces the importance of unrelated signals; only brain activities that are in sync will cause a significant increase of the Fiedler eigenvalue.

Currently this technique works for an individual patient. The next step is to integrate machine learning to generalize the technique for identifying different types of seizures across patients.

The idea is to take advantage of various parameters characterizing the network and use them as features to train the machine learning algorithm.

Bomela likens the way this will work to facial recognition software, which measures different features -- eyes, lips and so on -- generalizing from those examples to recognize any face.

"The network is like a face," he said. "You can extract different parameters from an individual's network -- such as the clustering coefficient or closeness centrality -- to help machine learning differentiate between different seizures."

That's because in network theory, similarities in specific parameters are associated with specific networks. In this case, those networks will correspond to different types of seizures.

One day, a person with a seizure disorder can wear a device analogous to an insulin pump. As the neurons begin to synchronize, the device will deliver medication or electrical interference to stop the seizure in its tracks.

Before this can happen, researchers need a better understanding of the neural network.

"While the ultimate goal is to refine the technique for clinical use, right now we are focused on developing methods to identify seizures as drastic changes in brain activity," Li said. "These changes are captured by treating the brain as a network in our current method."

Brandie Jefferson | EurekAlert!
Further information:
https://source.wustl.edu/2020/06/artificial-intelligence-identifies-locates-seizures-in-real-time/
http://dx.doi.org/10.1038/s41598-020-65401-6

More articles from Medical Engineering:

nachricht Lighting array in the ear: First use of multi-channel cochlear implants with microscale light-emitting diodes
06.07.2020 | Universitätsmedizin Göttingen - Georg-August-Universität

nachricht Wearable Health
29.06.2020 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Excitation of robust materials

Kiel physics team observed extremely fast electronic changes in real time in a special material class

In physics, they are currently the subject of intensive research; in electronics, they could enable completely new functions. So-called topological materials...

Im Focus: Electrons in the fast lane

Solar cells based on perovskite compounds could soon make electricity generation from sunlight even more efficient and cheaper. The laboratory efficiency of these perovskite solar cells already exceeds that of the well-known silicon solar cells. An international team led by Stefan Weber from the Max Planck Institute for Polymer Research (MPI-P) in Mainz has found microscopic structures in perovskite crystals that can guide the charge transport in the solar cell. Clever alignment of these "electron highways" could make perovskite solar cells even more powerful.

Solar cells convert sunlight into electricity. During this process, the electrons of the material inside the cell absorb the energy of the light....

Im Focus: The lightest electromagnetic shielding material in the world

Empa researchers have succeeded in applying aerogels to microelectronics: Aerogels based on cellulose nanofibers can effectively shield electromagnetic radiation over a wide frequency range – and they are unrivalled in terms of weight.

Electric motors and electronic devices generate electromagnetic fields that sometimes have to be shielded in order not to affect neighboring electronic...

Im Focus: Gentle wall contact – the right scenario for a fusion power plant

Quasi-continuous power exhaust developed as a wall-friendly method on ASDEX Upgrade

A promising operating mode for the plasma of a future power plant has been developed at the ASDEX Upgrade fusion device at Max Planck Institute for Plasma...

Im Focus: ILA Goes Digital – Automation & Production Technology for Adaptable Aircraft Production

Live event – July 1, 2020 - 11:00 to 11:45 (CET)
"Automation in Aerospace Industry @ Fraunhofer IFAM"

The Fraunhofer Institute for Manufacturing Technology and Advanced Materials IFAM l Stade is presenting its forward-looking R&D portfolio for the first time at...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Contact Tracing Apps against COVID-19: German National Academy Leopoldina hosts international virtual panel discussion

07.07.2020 | Event News

International conference QuApps shows status quo of quantum technology

02.07.2020 | Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

 
Latest News

Quick notes in the genome

07.07.2020 | Life Sciences

Limitations of Super-Resolution Microscopy Overcome

07.07.2020 | Life Sciences

Put into the right light - Reproducible and sustainable coupling reactions

07.07.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>