A new study co-led by Dartmouth researchers shows how radiation from black holes could have a nurturing effect on life. At the center of most large galaxies, including our own Milky Way, sits a supermassive black hole. Interstellar gas periodically falls into the orbit of these bottomless pits, switching the black hole into active galactic nucleus (AGN)-mode, blasting high-energy radiation across the galaxy. It’s not an environment you’d expect a plant or animal to thrive in. But in a surprising…
Research led by University of Toronto Professor Yu Zou aims to produce higher quality and more reliable metal parts for aerospace, automotive, energy and health-care applications Researchers at University of Toronto Engineering, led by Professor Yu Zou, are leveraging machine learning to improve additive manufacturing, also commonly known as 3D printing. In a new paper, published in the journal of Additive Manufacturing, the team introduces a new framework they’ve dubbed the Accurate Inverse process optimization framework in laser Directed Energy Deposition…
Plasmonic modulators are tiny components that convert electrical signals into optical signals in order to transport them through optical fibres. A modulator of this kind had never managed to transmit data with a frequency of over a terahertz (over a trillion oscillations per second). Now, researchers from the group led by Jürg Leuthold, Professor of Photonics and Communications at ETH Zurich, have succeeded in doing just that. Previous modulators could only convert frequencies up to 100 or 200 gigahertz – in…
Technion researchers develop a technology for encoding, retrieving, and rapidly reading data stored in DNA Researchers from the Henry and Marilyn Taub Faculty of Computer Science have developed an AI-based method that accelerates DNA-based data retrieval by three orders of magnitude while significantly improving accuracy. The research team included Ph.D. student Omer Sabary, Dr. Daniella Bar-Lev, Dr. Itai Orr, Prof. Eitan Yaakobi, and Prof. Tuvi Etzion. DNA data storage is an emerging field that leverages DNA as a platform for…
A new analysis of data collected over three years by the Dark Energy Spectroscopic Instrument (DESI) collaboration provides even stronger evidence than the group’s previous datasets that dark energy, long thought to be a “cosmological constant,” might be evolving over time in unexpected ways. Dr. Mustapha Ishak-Boushaki, professor of physics at The University of Texas at Dallas, is co-chair of the DESI working group that interprets cosmological survey data gathered by the international collaboration, which includes more than 900 researchers…
A study published in JCAP places new limits on quantum gravity using data from the underwater detector KM3NeT Quantum gravity is the missing link between general relativity and quantum mechanics, the yet-to-be-discovered key to a unified theory capable of explaining both the infinitely large and the infinitely small. The solution to this puzzle might lie in the humble neutrino, an elementary particle with no electric charge and almost invisible, as it rarely interacts with matter, passing through everything on our…
American Gastroenterological Association guideline concludes that it is not clear whether computer-aided detection systems (CADe) for colonoscopy should be recommended for routine widespread use The American Gastroenterological Association (AGA) released a new clinical guideline making no recommendation — for or against — the use of computer-aided detection systems (CADe) in colonoscopy. A rigorous review of evidence showed that artificial intelligence-assisted technology helps identify colorectal polyps. However, its impact on preventing colorectal cancer — the third most common cancer worldwide —…
Knowing from what debris field in the asteroid belt our meteorites originate is important for planetary defense efforts against Near Earth Asteroids. Where do meteorites of different type come from? In a review paper in the journal Meteoritics & Planetary Science, published online this week, astronomers trace the impact orbit of observed meteorite falls to several previously unidentified source regions in the asteroid belt. “This has been a decade-long detective story, with each recorded meteorite fall providing a new clue,”…
An AI-powered robot that can prepare cups of coffee in a busy kitchen could usher in the next generation of intelligent machines, a study suggests. Using a combination of cutting-edge AI, sensitive sensors and fine-tuned motor skills, the robot can interact with its surroundings in more human-like ways than ever before, researchers say. The new technology, developed by a team at the University of Edinburgh, could transform robots’ ability to carry out tasks that previously could only be done by…
Placing two layers of special 2D materials together and turning them at large angles creates artificial atoms with intriguing optical properties By taking two flakes of special materials that are just one atom thick and twisting them at high angles, researchers at the University of Rochester have unlocked unique optical properties that could be used in quantum computers and other quantum technologies. In a new study published in Nano Letters, the researchers show that precisely layering nano-thin materials creates excitons—essentially, artificial atoms—that can act…
For decades, atomic clocks have been the pinnacle of precision timekeeping, enabling GPS navigation, cutting-edge physics research, and tests of fundamental theories. But researchers at JILA, led by JILA and NIST Fellow and University of Colorado Boulder physics professor Jun Ye, in collaboration with the Technical University of Vienna, are pushing beyond atomic transitions to something potentially even more stable: a nuclear clock. This clock could revolutionize timekeeping by using a uniquely low-energy transition within the nucleus of a thorium-229…
Researchers at Heriot-Watt University have made a ground-breaking discovery paving the way for a transformative era in photonic technology. For decades, scientists have theorised the possibility of manipulating the optical properties of light by adding a new dimension—time. This once-elusive concept has now become a reality thanks to nanophotonics experts from the School of Engineering and Physical Sciences in Edinburgh, Scotland. The team’s breakthrough emerged from experiments with nanomaterials known as transparent conducting oxides (TCOs) – a special glass capable…
A team of researchers from the University of Ottawa has made significant strides in understanding the ionization of atoms and molecules, a fundamental process in physics that has implications for various fields including x-ray generation and plasma physics. Think about atoms – the building blocks of everything around us. Sometimes, they lose their electrons and become charged particles (that’s ionization). It happens in lightning, in plasma TVs, and even in the northern lights. Until now, scientists thought they could only…
We all know someone who seems to defy aging—people who look younger than their peers despite being the same age. What’s their secret? Scientists at Osaka University (Japan) may have found a way to quantify this difference. By incorporating hormone (steroid) metabolism pathways into an AI-driven model, they have developed a new system to estimate a person’s biological age a measure of how well their body has aged, rather than just counting the years since birth. Using just five drops…
As the new wave of technological revolution and industrial transformation progresses, scientific research is expanding towards the macroscopic, delving into the microscopic, and advancing into extreme conditions, which becoming the developmental trends at the forefront of global science and technology. With the implementation of national strategies such as the high-quality development of green and low-carbon, China faces a series of new scientific and technological challenges in the field of construction under extreme environments. Among these, construction robotics in extreme environments,…
As the planet warms, Antarctica’s ice sheet is melting and contributing to sea-level rise around the globe. Antarctica holds enough frozen water to raise global sea levels by 190 feet, so precisely predicting how it will move and melt now and in the future is vital for protecting coastal areas. But most climate models struggle to accurately simulate the movement of Antarctic ice due to sparse data and the complexity of interactions between the ocean, atmosphere, and frozen surface. In…
Lunar Magnetotelluric Sounder to characterize Moon’s mantle Just hours after touching down on the surface of the Moon on March 2 aboard Firefly Aerospace’s Blue Ghost 1 lander, the Southwest Research Institute-led Lunar Magnetotelluric Sounder (LMS) was activated and deployed its five sensors to study the Moon’s interior by measuring electric and magnetic fields. The LMS instrument is the first extraterrestrial application of magnetotellurics. “For more than 50 years, scientists have used magnetotellurics on Earth for a wide variety of…