A new analysis of data collected over three years by the Dark Energy Spectroscopic Instrument (DESI) collaboration provides even stronger evidence than the group’s previous datasets that dark energy, long thought to be a “cosmological constant,” might be evolving over time in unexpected ways. Dr. Mustapha Ishak-Boushaki, professor of physics at The University of Texas at Dallas, is co-chair of the DESI working group that interprets cosmological survey data gathered by the international collaboration, which includes more than 900 researchers…
A study published in JCAP places new limits on quantum gravity using data from the underwater detector KM3NeT Quantum gravity is the missing link between general relativity and quantum mechanics, the yet-to-be-discovered key to a unified theory capable of explaining both the infinitely large and the infinitely small. The solution to this puzzle might lie in the humble neutrino, an elementary particle with no electric charge and almost invisible, as it rarely interacts with matter, passing through everything on our…
Knowing from what debris field in the asteroid belt our meteorites originate is important for planetary defense efforts against Near Earth Asteroids. Where do meteorites of different type come from? In a review paper in the journal Meteoritics & Planetary Science, published online this week, astronomers trace the impact orbit of observed meteorite falls to several previously unidentified source regions in the asteroid belt. “This has been a decade-long detective story, with each recorded meteorite fall providing a new clue,”…
Placing two layers of special 2D materials together and turning them at large angles creates artificial atoms with intriguing optical properties By taking two flakes of special materials that are just one atom thick and twisting them at high angles, researchers at the University of Rochester have unlocked unique optical properties that could be used in quantum computers and other quantum technologies. In a new study published in Nano Letters, the researchers show that precisely layering nano-thin materials creates excitons—essentially, artificial atoms—that can act…
For decades, atomic clocks have been the pinnacle of precision timekeeping, enabling GPS navigation, cutting-edge physics research, and tests of fundamental theories. But researchers at JILA, led by JILA and NIST Fellow and University of Colorado Boulder physics professor Jun Ye, in collaboration with the Technical University of Vienna, are pushing beyond atomic transitions to something potentially even more stable: a nuclear clock. This clock could revolutionize timekeeping by using a uniquely low-energy transition within the nucleus of a thorium-229…
Researchers at Heriot-Watt University have made a ground-breaking discovery paving the way for a transformative era in photonic technology. For decades, scientists have theorised the possibility of manipulating the optical properties of light by adding a new dimension—time. This once-elusive concept has now become a reality thanks to nanophotonics experts from the School of Engineering and Physical Sciences in Edinburgh, Scotland. The team’s breakthrough emerged from experiments with nanomaterials known as transparent conducting oxides (TCOs) – a special glass capable…
A team of researchers from the University of Ottawa has made significant strides in understanding the ionization of atoms and molecules, a fundamental process in physics that has implications for various fields including x-ray generation and plasma physics. Think about atoms – the building blocks of everything around us. Sometimes, they lose their electrons and become charged particles (that’s ionization). It happens in lightning, in plasma TVs, and even in the northern lights. Until now, scientists thought they could only…
Lunar Magnetotelluric Sounder to characterize Moon’s mantle Just hours after touching down on the surface of the Moon on March 2 aboard Firefly Aerospace’s Blue Ghost 1 lander, the Southwest Research Institute-led Lunar Magnetotelluric Sounder (LMS) was activated and deployed its five sensors to study the Moon’s interior by measuring electric and magnetic fields. The LMS instrument is the first extraterrestrial application of magnetotellurics. “For more than 50 years, scientists have used magnetotellurics on Earth for a wide variety of…
Advancing the search for weird life on weird planets Scientists have identified a promising new way to detect life on faraway planets, hinging on worlds that look nothing like Earth and gases rarely considered in the search for extraterrestrials. In a new Astrophysical Journal Letters paper, researchers from the University of California, Riverside, describe these gases, which could be detected in the atmospheres of exoplanets — planets outside our solar system — with the James Webb Space Telescope, or JWST….
Gemini North’s MAROON-X instrument finds evidence for four mini-Earth exoplanets around our famous cosmic neighbor Barnard’s Star For a century, astronomers have been studying Barnard’s Star in the hope of finding planets around it. First discovered by E. E. Barnard at Yerkes Observatory in 1916, it is the nearest single star system to Earth [1]. Barnard’s Star is classified as a red dwarf — low-mass stars that often host closely-packed planetary systems, often with multiple rocky planets. Red dwarfs are extremely numerous in the Universe, so scientists…
University of Arizona astronomers have learned more about a surprisingly mature galaxy that existed when the universe was just less than 300 million years old – just 2% of its current age. Observed by NASA’s James Webb Space Telescope, the galaxy – designated JADES-GS-z14-0 – is unexpectedly bright and chemically complex for an object from this primordial era, the researchers said. This provides a rare glimpse into the universe’s earliest chapter. The findings, published in the journal Nature Astronomy, build…
Computer simulations reveal how water separates into high-density and low-density liquids Water is unique. It is one of the only substances that can exist in nature as a solid, liquid and gas at the same time under ambient conditions (think of solid ice over a pond, which is liquid underneath while storm clouds float overhead). It is also one of the only substances whose solid form is less dense than its liquid — this is why ice floats. Now scientists…
Cutting-edge observations of Centaurus Cluster shine new light on evolving universe The XRISM collaboration have discovered flows of hot gas in the core of the Centaurus Cluster. By comparing state-of-the-art X-ray measurements from the XRISM satellite with numerical simulations, they showed this is evidence for collisions between galaxy clusters, causing gas inside to “slosh”. This solves the longstanding mystery of how cluster cores stay hot, and sheds light on how our universe continues to evolve. Astronomers have long envisioned how…
EP’s cutting-edge instruments and international collaboration drive new discoveries in transient and multi-messenger astronomy The Science White Paper for the Einstein Probe (EP) mission has been published in Science China: Physics, Mechanics & Astronomy. This mission, spearheaded by the Chinese Academy of Sciences (CAS) in collaboration with the European Space Agency (ESA), the Max Planck Institute for Extraterrestrial Physics (MPE), and the French National Centre for Space Studies (CNES), is poised to advance the field of time-domain and X-ray astronomy…
New method to detect life makes Mars sample return protocols rock solid Within the next decade, space agencies plan to bring samples of rock from Mars to Earth for study. Of concern is the possibility these samples contain life, which could have unforeseen consequences. Therefore, researchers in this field strive to create methods to detect life. For the first time, researchers, including those from the University of Tokyo and NASA, successfully demonstrated a method to detect life in ancient rocks…
The discovery of a planet-forming disk much older than expected provides new insights into planet formation and the habitability of planets outside our solar system If there were such a thing as a photo album of the universe, it might include snapshots of pancake-like disks of gas and dust, swirling around newly formed stars across the Milky Way. Known as planet-forming disks, they are believed to be a short-lived feature around most, if not all, young stars, providing the raw…