Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

HomeScience ReportsReports and NewsArchitecture and Construction

What is a passive house and how is the architecture designed?

There are many reasons to build a passive house. The most important are related to the cost advantages you enjoy by building a passive house. The architecture of a passive house is designed so that the basic needs of the home owner, with respect to energy supply, are autonomously controlled. As the term "passive" implies, regulating the energy balance requires no action on your part. This capability stems from the architecture of the house. Roughly 8,000 people in Germany have meanwhile taken advantage of this architecture to build a passive house. But how does a passive house function and what is the respective architecture basically made of? The architecture is typically designed so that the outer shell of the passive house is insulated to keep the heat from escaping outside.

The passive house runs on its own

When building a passive house, a ventilation system acts to additional recover 80 percent of the heat. The roof of a passive house is designed to capture additional heat and store it until the room temperature sinks enough so that it must be released. Related studies have shown that a passive house constantly maintains an indoor temperature of more than 20°C at an outside temperature of -14°C. A passive house provides the freedom to individualize the architecture. The owner can decide whether to build the house out of concrete/brick, wood or a combination. The architecture always depends on the architect and the individual plan. However, there are several factors to consider when building a passive house.

The characteristics of a passive house thanks to its architecture

Passive houses exhibit specific characteristics that are tied to the architecture. The external building components must be extremely well insulated in addition to carefully constructing the corners, edges, joints and other cross sections. This would otherwise lead to excessive heat loss and failure of the architecture to fulfill the desired requirements. By taking these factors into account and using the right approach to building a passive house, one can expect a minimal heat loss of only .15 watts per square meter of external surface area. If you are building a house, the architecture should be designed to maximize the energy gain through the solar cells. For this reason, the solar cells on the roof of the passive house must have a southerly orientation.

To build a passive house, it should be designed such that the respective solar collectors and heat pumps supply power to the hot water system. When building a passive house and using the appropriate architecture, you can expect to significantly lower your operating costs.

Lower the operating costs

The architecture is what makes it possible for you to build a passive house and to have a complete energy system that runs on its own. While more and more people are dreaming of building a house, it always involves high costs. With the right architecture, you can build a passive house assuming that you will benefit from significantly lower monthly operating costs. This approach allows you to build to a house that runs completely on its own thanks to the corresponding high-quality architecture . Because the architecture is so well thought-out, you can build this house under the assumption that the heating balance will regulate itself. For this reason, you can assume that building a house is a worthwhile effort.

Architecture and Construction

Here you can discover new and innovative developments from the world of building design and construction.

innovations-report offers reports and articles on a variety of topics such as building optimization, modern construction materials, energy-efficient construction, natural insulation materials and passive buildings.

Latest News:

Page anfang | 1 | 2 | 3 | 4 | 5 | ende

New Generation of Cleaning Tools for CSP Plants Reduces the Water Consumption

Tower & Parabolic Trough plants are the most common plants worldwide. ECILIMP Termosolar has developed a new generation of cleaning tools for CSP plants during the Horizon2020 MinWaterCSP project (Minimized Water Consumption in CSP plants). The EU funded project solution has been entirely developed in Spain and tested both in Spain and Morocco.

The optimization of cleaning water consumption in CSP plants is a huge effort considering these plants are increasing their mirror surface (size) while...

09.11.2018 | nachricht Read more

memory-steel - a new material for the strengthening of buildings

A new building material developed at Empa is about to be launched on the market: "memory-steel" can not only be used to reinforce new, but also existing concrete structures. When the material is heated (one-time), prestressing occurs automatically. The Empa spin-off re-fer AG is now presenting the material with shape memory in a series of lectures.

So far, the steel reinforcements in concrete structures are mostly prestressed hydraulically. This re-quires ducts for guiding the tension cables, anchors for...

23.10.2018 | nachricht Read more

Why does concrete swell and crack?

When bridges, dam walls and concrete foundations form cracks, AAR is often the culprit: the alkali-aggregate reaction. It causes the concrete to swell and renders renovations or even reconstructions necessary. A project funded by the Swiss National Science Foundation (SNSF) and coordinated by Empa is studying the “concrete disease”.

Unfortunately, concrete does not last forever. The ravages of time also take their toll on concrete structures in Switzerland. Not only are reinforced...

05.10.2018 | nachricht Read more

A new way of thinking for the built environment

The Cluster of Excellence “Intergrative Computational Design and Construction for Architecture” at the University of Stuttgart aims to harness the full potential of digital technologies in order to rethink design and construction, and enable groundbreaking innovations for the building sector through a systematic, holistic and integrative computational approach.

New buildings will need to be constructed for an additional 2.6 billion people worldwide over the next 35 years. Yet the productivity of the building industry...

01.10.2018 | nachricht Read more

Supported by software, Kaiserslautern architects assemble wooden dome like a puzzle

Wood is becoming increasingly popular as a sustainable building material. At the Technische Universität Kaiserslautern (TUK), the team led by Assistant Professor Dr Christopher Robeller has developed software that calculates how, for example, complex wooden building parts can best be assembled from individual parts, similar to a puzzle. A milling machine manufactures the parts according to these specifications. They only have to be assembled afterwards. What is special: Only wood is used, also connecting elements are made of natural material. This is how the researchers recently built a dome. Construction companies could use the technology by means of apps to build quickly and sustainably.

People have been using wood for constructing buildings material for thousands of years. While the material has tended to fall behind in recent years, demand...

19.09.2018 | nachricht Read more

Construction Impact Guide

Wie lassen sich negative Auswirkungen von Baustellen in Innenstädten reduzieren? Mit diesem Thema hat sich Prof. Dr. Benjamin Bierwirth von der Hochschule RheinMain im Rahmen des Forschungsprojekts „Construction Impact Guide“ (CIG) beschäftigt und ein Wirkmodell entwickelt.

Große Baustellen in Innenstädten haben häufig Auswirkungen auf das direkte Umfeld, auf Anwohner, Geschäfte und den Verkehr. Mit diesem Thema hat sich Prof. Dr....

18.05.2018 | nachricht Read more

New, forward-looking report outlines research path to sustainable cities

NSF advisory committee assesses ongoing transformation of our increasingly urban planet

In 1950, fewer than one-third of the world's people lived in cities. Today more than half do. By 2050, urban areas will be home to some two-thirds of Earth's...

24.01.2018 | nachricht Read more

Insulating bricks with microscopic bubbles

Better thermal insulation means lower heating costs - but this should not be at the expense of exciting architecture. A new type of brick filled with aerogel could make thin and highly insulating walls possible in the future - without any additional insulation layer.

The calculation is simple: the better a building is insulated, the less heat is lost in winter - and the less energy is needed to achieve a comfortable room...

16.01.2018 | nachricht Read more

Magnetic liquids improve energy efficiency of buildings

Materials scientists of the Friedrich Schiller University Jena, Germany, develop smart windows for controlled shading and solar thermal energy harvesting

Climate protection and the reduction of carbon dioxide emissions have been on top of global development agendas. Accordingly, research and development projects...

16.01.2018 | nachricht Read more

Smart buildings through innovative membrane roofs and façades

The Cooperative Research Project FLEX-G started on June 1, 2017 under the federal construction technology initiative named ENERGIEWENDEBAUEN funded by the German Federal Ministry for Economic Affairs and Energy (FR 03ET1470A). The main goal of the research project is to investigate technologies for the manufacturing of translucent and transparent membrane roof and façade elements with integrated optoelectronic components. The focus lies on a switchable total energy transmittance (often referred to as the solar factor or solar heat gain and “g-value” in Europe) and on flexible solar cell integration to significantly contribute to both energy saving and power generation in buildings.

Solar modules and a variety of energy management systems are well established in small and large buildings to optimize their energy balance both by generating...

31.08.2017 | nachricht Read more
Page anfang | 1 | 2 | 3 | 4 | 5 | ende

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

Purdue cancer identity technology makes it easier to find a tumor's 'address'

16.11.2018 | Health and Medicine

Good preparation is half the digestion

16.11.2018 | Life Sciences

Microscope measures muscle weakness

16.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>