Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The intravenous swim team

28.07.2016

Drexel's microswimmer robot chains can decouple and reconnect in a magnetic field

Drexel University researchers, led by MinJun Kim, PhD, a professor in the College of Engineering, have successfully pulled off a feat that both sci-fi fans and Michael Phelps could appreciate. Using a rotating magnetic field they show how multiple chains of microscopic magnetic bead-based robots can link up to reach impressive speeds swimming through in a microfluidic environment. Their finding is the latest step toward using the so-called "microswimmers" to deliver medicine and perform surgery inside the body.


By rotating the magnetic field at a certain frequency the robotic chains will split into separate, individually controllable robots.

Credit: Drexel University

In a paper recently published in Nature Scientific Reports, the mechanical engineers describe their process for magnetically linking and unlinking the beads while they're swimming, and individually controlling the smaller decoupled robots in a magnetic field. This data helps further the concept of using microrobots for targeted, intravenous drug delivery, surgery and cancer treatment.

"We believe microswimmer robots could one day be used to carry out medical procedures and deliver more direct treatments to affected areas inside the body," said U Kei Cheang, PhD, a postdoctoral research fellow in Drexel's College of Engineering and lead author of the paper. "They can be highly effective for these jobs because they're able to navigate in many different biological environments, such as the blood stream and the microenvironment inside a tumor."

One of the central findings is that longer chains can swim faster than shorter ones. This was determined by starting with a three-bead swimmer and progressively assembling longer ones. The longest chain examined by the group, 13-beads in length, reached a speed of 17.85 microns/second.

Drexel engineers have been adding the understanding of microrobots for biomedical applications for nearly a decade, with the goal of producing a robotic chain that can travel inside the body, then decouple to deliver their medicinal payload or targeted treatment.

The reason for this approach is that a rather versatile robot that can do multiple tasks could be controlled using a single magnetic field.

The robot chains move by spinning, like a long screw-like propeller in step with a rotating external magnetic field. So the faster the field rotates, the more the robots spin and the faster they move. This dynamic propulsion system is also the key to getting them to divide into shorter segments. At a certain rate of rotation the robotic chain will split into two smaller chains that can move independently of each other.

"To disassemble the microswimmer we simply increased the rotation frequency," Cheang said. "For a seven-bead microswimmer, we showed that by upping the frequency 10-15 cycles the hydrodynamic stress on the swimmer physically deformed it by creating a twisting effect which lead to disassembly into a three-bead and four-bead swimmer."

Once separate, the field can be adjusted to manipulate the three and four-bead robots to move in different directions. Because the beads are magnetized, they can eventually be reconnected -- simply by tweaking the field to bring them back into contact on the side with the corresponding magnetic charge. The team also determined optimal rotation rates and angle of approach to facilitate re-linking the microswimmer chains.

This finding is a key component of a larger project in which Drexel is partnering with 10 institutions of research and medicine from around the world to develop this technology for performing minimally invasive surgery on blocked arteries.

"For applications of drug delivery and minimally invasive surgery, future work remains to demonstrate the different assembled configurations can achieve navigation through various in vivo environments, and can be constructed to accomplish different tasks during operative procedures," the authors write. "But we believe that the mechanistic insight into the assembly process we discussed in this research will greatly aid future efforts at developing configurations capable of achieving these crucial abilities."

###

link to video: https://www.youtube.com/watch?v=t4AyM52m0s0&feature=youtu.be

Media Contact

Britt Faulstick
bef29@drexel.edu
215-895-2617

 @DrexelNews

http://www.Drexel.edu/ 

Britt Faulstick | EurekAlert!

More articles from Medical Engineering:

nachricht Virtual Reality in Medicine: New Opportunities for Diagnostics and Surgical Planning
07.12.2016 | Universität Basel

nachricht 3-D printed kidney phantoms aid nuclear medicine dosing calibration
06.12.2016 | Society of Nuclear Medicine

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>