Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Robotically assisted bypass surgery reduces complications after surgery and cuts recovery

28.10.2014

Less invasive type of heart surgery using robotic precision is safe, quick and clean

Robotically assisted coronary artery bypass grafting (CABG) surgery is a rapidly evolving technology that shortens hospital stays and reduces the need for blood products, while decreasing recovery times, making the procedure safer and less risky, says a study presented at the Canadian Cardiovascular Congress.

"Robotically assisted CABG is a safe and feasible alternative approach to standard bypass surgery in properly selected patients. It is a less traumatic and less invasive approach than regular CABG," says cardiac surgeon and researcher Dr. Richard Cook of the University of British Columbia. "It may reduce complications following surgery, and in the Canadian experience, has been associated with an extremely low mortality rate."

For CABG, or bypass surgery, a surgeon uses a section of vein, usually from the patient's leg, or an artery from inside the patient's chest, to create a new route for oxygen-rich blood to reach the heart. It is performed to improve blood flow to the heart muscle caused by the build up of plaque in the coronary arteries (atherosclerosis).

The robot offers several technical advantages to surgeons including a magnified 3D view of the patient's heart, as well as the elimination of any kind of tremor, which makes for precise incisions.

For this study 300 patients (men and women 60 years or older) underwent robotically assisted CABG at three hospital sites. In addition to the Vancouver General Hospital, the study was undertaken at the London Health Sciences Centre, led by Drs. Bob Kiaii and Michael Chu, and at Montreal's Sacred Heart Hospital, led by Dr. Hugues Jeanmart.

There were no deaths in this group of patients, with only one patient developing a deep wound infection after the procedure.

The doctors performed the surgery using the da Vinci Surgical System. It consists of a "surgeon console" where the surgeon views a high definition 3D image inside the patient's body. When the surgeon's fingers move the master controls, the system's "patient-side cart" springs into action with three or four robotic arms mimicking the surgeon's hand, wrist and finger movements with surgical instruments.

With traditional CABG the average hospital stay is five to six days. With the robotically assisted surgery, that was cut to an average of four days in the group of patients having surgery at London Health Sciences Centre; the hospital with the greatest experience with robotically-assisted cardiac surgery in Canada.

There was also less blood loss, which translated into a lower need for blood products. The more precise incisions also mean less cosmetic scarring.

Patients from the study reported being back to near normal levels of activity within a couple of weeks. With standard CABG, patients are asked to avoid driving or lifting any weights over 10 pounds for six weeks.

"Each year nearly 25,000 bypass surgeries are performed in Canada,; it is the most common form of surgery for people with heart disease," says Heart and Stroke Foundation spokesperson Dr. Beth Abramson, author of Heart Health for Canadians. "Surgery saves lives and helps improve quality of life. The safer we can make the surgery, the more lives we can save."

She adds that bypass surgery doesn't cure the underlying heart disease. "Health behaviour changes and medications as prescribed by your healthcare providers are critical to preventing further damage."

Currently, 17 centres across Canada use this robotic technology for surgery. However, they are used primarily in the fields of urology and gynecology. Dr. Cook and his colleagues hope findings from this study will increase the use robotically assisted heart surgery.

The Canadian Cardiovascular Congress is co-hosted by the Heart and Stroke Foundation and the Canadian Cardiovascular Society.

###

Statements and conclusions of study authors are solely those of the study authors and do not necessarily reflect Foundation or CCS policy or position. The Heart and Stroke Foundation and the

Canadian Cardiovascular Society make no representation or warranty as to their accuracy or reliability.

About the Heart and Stroke Foundation

The Heart and Stroke Foundation's mission is to prevent disease, save lives and promote recovery. A volunteer-based health charity, we strive to tangibly improve the health of every Canadian family, every day. Healthy lives free of heart disease and stroke. Together we will make it happen. heartandstroke.ca

For more information and/or interviews, contact the CCC 2014 MEDIA OFFICE AT 778-331-7618 (Oct 25-28).

Amanda Bates
Curve Communications
amanda@curvecommunications.com
office: 604-684-3170
cell: 604-306-0027 Gina Vesnaver

Curve Communications
gina@curvecommunications.com
office: 604-684-3170
cell: 604-317-6129

Congress information and media registration is at http://www.cardiocongress.org

After October 28, 2014, contact:

Jane-Diane Fraser
Heart and Stroke Foundation of Canada
jfraser@hsf.ca (613) 691-4020

Amanda Bates | Eurek Alert!

More articles from Medical Engineering:

nachricht New technique makes brain scans better
22.06.2017 | Massachusetts Institute of Technology

nachricht New technology enables effective simultaneous testing for multiple blood-borne pathogens
13.06.2017 | Elsevier

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>