Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Robotically assisted bypass surgery reduces complications after surgery and cuts recovery

28.10.2014

Less invasive type of heart surgery using robotic precision is safe, quick and clean

Robotically assisted coronary artery bypass grafting (CABG) surgery is a rapidly evolving technology that shortens hospital stays and reduces the need for blood products, while decreasing recovery times, making the procedure safer and less risky, says a study presented at the Canadian Cardiovascular Congress.

"Robotically assisted CABG is a safe and feasible alternative approach to standard bypass surgery in properly selected patients. It is a less traumatic and less invasive approach than regular CABG," says cardiac surgeon and researcher Dr. Richard Cook of the University of British Columbia. "It may reduce complications following surgery, and in the Canadian experience, has been associated with an extremely low mortality rate."

For CABG, or bypass surgery, a surgeon uses a section of vein, usually from the patient's leg, or an artery from inside the patient's chest, to create a new route for oxygen-rich blood to reach the heart. It is performed to improve blood flow to the heart muscle caused by the build up of plaque in the coronary arteries (atherosclerosis).

The robot offers several technical advantages to surgeons including a magnified 3D view of the patient's heart, as well as the elimination of any kind of tremor, which makes for precise incisions.

For this study 300 patients (men and women 60 years or older) underwent robotically assisted CABG at three hospital sites. In addition to the Vancouver General Hospital, the study was undertaken at the London Health Sciences Centre, led by Drs. Bob Kiaii and Michael Chu, and at Montreal's Sacred Heart Hospital, led by Dr. Hugues Jeanmart.

There were no deaths in this group of patients, with only one patient developing a deep wound infection after the procedure.

The doctors performed the surgery using the da Vinci Surgical System. It consists of a "surgeon console" where the surgeon views a high definition 3D image inside the patient's body. When the surgeon's fingers move the master controls, the system's "patient-side cart" springs into action with three or four robotic arms mimicking the surgeon's hand, wrist and finger movements with surgical instruments.

With traditional CABG the average hospital stay is five to six days. With the robotically assisted surgery, that was cut to an average of four days in the group of patients having surgery at London Health Sciences Centre; the hospital with the greatest experience with robotically-assisted cardiac surgery in Canada.

There was also less blood loss, which translated into a lower need for blood products. The more precise incisions also mean less cosmetic scarring.

Patients from the study reported being back to near normal levels of activity within a couple of weeks. With standard CABG, patients are asked to avoid driving or lifting any weights over 10 pounds for six weeks.

"Each year nearly 25,000 bypass surgeries are performed in Canada,; it is the most common form of surgery for people with heart disease," says Heart and Stroke Foundation spokesperson Dr. Beth Abramson, author of Heart Health for Canadians. "Surgery saves lives and helps improve quality of life. The safer we can make the surgery, the more lives we can save."

She adds that bypass surgery doesn't cure the underlying heart disease. "Health behaviour changes and medications as prescribed by your healthcare providers are critical to preventing further damage."

Currently, 17 centres across Canada use this robotic technology for surgery. However, they are used primarily in the fields of urology and gynecology. Dr. Cook and his colleagues hope findings from this study will increase the use robotically assisted heart surgery.

The Canadian Cardiovascular Congress is co-hosted by the Heart and Stroke Foundation and the Canadian Cardiovascular Society.

###

Statements and conclusions of study authors are solely those of the study authors and do not necessarily reflect Foundation or CCS policy or position. The Heart and Stroke Foundation and the

Canadian Cardiovascular Society make no representation or warranty as to their accuracy or reliability.

About the Heart and Stroke Foundation

The Heart and Stroke Foundation's mission is to prevent disease, save lives and promote recovery. A volunteer-based health charity, we strive to tangibly improve the health of every Canadian family, every day. Healthy lives free of heart disease and stroke. Together we will make it happen. heartandstroke.ca

For more information and/or interviews, contact the CCC 2014 MEDIA OFFICE AT 778-331-7618 (Oct 25-28).

Amanda Bates
Curve Communications
amanda@curvecommunications.com
office: 604-684-3170
cell: 604-306-0027 Gina Vesnaver

Curve Communications
gina@curvecommunications.com
office: 604-684-3170
cell: 604-317-6129

Congress information and media registration is at http://www.cardiocongress.org

After October 28, 2014, contact:

Jane-Diane Fraser
Heart and Stroke Foundation of Canada
jfraser@hsf.ca (613) 691-4020

Amanda Bates | Eurek Alert!

More articles from Medical Engineering:

nachricht Artificial intelligence may help diagnose tuberculosis in remote areas
25.04.2017 | Radiological Society of North America

nachricht Pharmacoscpy: Next-Generation Microscopy
25.04.2017 | CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Link Discovered between Immune System, Brain Structure and Memory

26.04.2017 | Life Sciences

New survey hints at exotic origin for the Cold Spot

26.04.2017 | Physics and Astronomy

NASA examines newly formed Tropical Depression 3W in 3-D

26.04.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>