Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New microscopy technology augments surgeon's view for greater accuracy

07.10.2015

Real-time overlay of real and computer-generated images for cancer diagnostics, neurosurgery, more

Researchers at the University of Arizona (UA) have developed a prototype of a new microscope technology that could help surgeons work with a greater degree of accuracy. The new technology, call augmented microscopy, overlays images depicting diagnostic information such as blood flow and cancerous tissue over real images of blood vessels and other tissues and structures being viewed in the microscope.


These are custom colored dye solutions with randomly plated ICG solution: (a) visible view through microscope, (b) NIR view seen on computer monitor, and (c) augmented view seen in real time through the ocular of the augmented microscope.

Credit: © the authors, Journal of Biomedical Optics doi:10.1117/1.JBO.20.10.106002

A report on the work by Jeffrey Watson and co-authors from the UA departments of Biomedical Engineering and Surgery was published today in the Journal of Biomedical Optics, published by SPIE, the international society for optics and photonics.

Surgical microscopes are highly specialized stereomicroscopes installed on articulated mounts and provide a long working distance and functional enhancements, and are widely used in certain delicate operations, notably neurosurgery.

Within the last decade, surgical microscopes have been combined with near-infrared (NIR) fluorescence imaging, in which contrast agents are injected into tissue and their fluorescence detected in NIR scans. The scans may reveal patterns of blood flow, or differentiate cancerous from normal tissue.

But there are limitations. For example, some microscopes used in complex vascular surgeries switch between two different views: the fully optical bright-field (real) view and the computer-processed projection of NIR fluorescence. The NIR image is two-dimensional, and on its own lacks the spatial cues that would help the surgeon identify anatomical points of reference. So the surgeon must visualize how the fluorescence in the NIR image lines up with the respective anatomical structures shown in the bright-field view.

The UA researchers' article, "Augmented microscopy: Real-time overlay of bright-field and near-infrared fluorescence images" describes their prototype of an augmented stereomicroscope that presents a simultaneous view of real objects in the surgical field and computer-processed images superimposed in real time.

"Surgeons want to see the molecular signals with their eyes, so that they can feel confident about what is there," said journal associate editor Brian Pogue of Dartmouth College. "Too often, what they see is a report of the signals depicted in false color on a monitor. By displaying information through the surgical scope itself, the surgeon then sees the information with his or her own eyes."

Pogue said he sees the work being important in advancing the translation of research into clinical practice. "There are very few papers on this idea of augmenting the surgical field of view that the surgeon sees, yet this is a high-interest topic," he said. "This article presents a very practical idea and innovative implementation which is well done technically."

The prototype offers advantages over earlier versions of augmented microscopes. By utilizing the optical path of the stereomicroscope, it maintains full three-dimensional stereoscopic vision, which is lost in fully digital display systems.

It also retains the imaging environment familiar to surgeons, including key features of surgical microscopes such as real-time magnification and focus adjustments, camera mounting, and multiuser access.

One possible application for this augmented microscope is laser surgery. In the past, surgeons could not see the laser beam through the standard stereomicroscope, nor anatomical details in the NIR images.

The researchers also suggest that this technology will be useful in the surgical treatment of brain tumors. Surgeons aggressively removing a tumor run the risk of damaging normal brain tissue and impairing the patient's brain functions; on the other hand, incomplete removal of a tumor results in immediate relapse in 90% of patients. Being able to simultaneously see the surgical field and the contrast agent identifying cancerous tissue within the augmented microscope may allow surgeons to remove these challenging tumors more accurately.

###

The work was supported by funding from the National Institutes of Health.

Lihong Wang, Gene K. Beare Distinguished Professor of Biomedical Engineering at Washington University in St. Louis, is editor-in-chief of the Journal of Biomedical Optics. The journal is published in print and digitally in the SPIE Digital Library, which contains more than 430,000 articles from SPIE journals, proceedings, and books, with approximately 18,000 new research papers added each year.

About SPIE

SPIE is the international society for optics and photonics, an educational not-for-profit organization founded in 1955 to advance light-based science and technology. The Society serves nearly 264,000 constituents from approximately 166 countries, offering conferences and their published proceedings, continuing education, books, journals, and the SPIE Digital Library in support of interdisciplinary information exchange, professional networking, and patent precedent. SPIE provided more than $4 million in support of education and outreach programs in 2014. SPIE is a Founding Partner of the International Year of Light and Light-based Technologies and a Founding Sponsor of the U.S. National Photonics Initiative. http://www.spie.org

Media Contact

Amy Nelson
amy@spie.org
360-685-5478

 @SPIEtweets

http://spie.org/ 

Amy Nelson | EurekAlert!

More articles from Medical Engineering:

nachricht Novel PET tracer identifies most bacterial infections
06.10.2017 | Society of Nuclear Medicine and Molecular Imaging

nachricht Teleoperating robots with virtual reality
05.10.2017 | Massachusetts Institute of Technology, CSAIL

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Electrode materials from the microwave oven

19.10.2017 | Materials Sciences

New material for digital memories of the future

19.10.2017 | Materials Sciences

Physics boosts artificial intelligence methods

19.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>