Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New microscopy technology augments surgeon's view for greater accuracy

07.10.2015

Real-time overlay of real and computer-generated images for cancer diagnostics, neurosurgery, more

Researchers at the University of Arizona (UA) have developed a prototype of a new microscope technology that could help surgeons work with a greater degree of accuracy. The new technology, call augmented microscopy, overlays images depicting diagnostic information such as blood flow and cancerous tissue over real images of blood vessels and other tissues and structures being viewed in the microscope.


These are custom colored dye solutions with randomly plated ICG solution: (a) visible view through microscope, (b) NIR view seen on computer monitor, and (c) augmented view seen in real time through the ocular of the augmented microscope.

Credit: © the authors, Journal of Biomedical Optics doi:10.1117/1.JBO.20.10.106002

A report on the work by Jeffrey Watson and co-authors from the UA departments of Biomedical Engineering and Surgery was published today in the Journal of Biomedical Optics, published by SPIE, the international society for optics and photonics.

Surgical microscopes are highly specialized stereomicroscopes installed on articulated mounts and provide a long working distance and functional enhancements, and are widely used in certain delicate operations, notably neurosurgery.

Within the last decade, surgical microscopes have been combined with near-infrared (NIR) fluorescence imaging, in which contrast agents are injected into tissue and their fluorescence detected in NIR scans. The scans may reveal patterns of blood flow, or differentiate cancerous from normal tissue.

But there are limitations. For example, some microscopes used in complex vascular surgeries switch between two different views: the fully optical bright-field (real) view and the computer-processed projection of NIR fluorescence. The NIR image is two-dimensional, and on its own lacks the spatial cues that would help the surgeon identify anatomical points of reference. So the surgeon must visualize how the fluorescence in the NIR image lines up with the respective anatomical structures shown in the bright-field view.

The UA researchers' article, "Augmented microscopy: Real-time overlay of bright-field and near-infrared fluorescence images" describes their prototype of an augmented stereomicroscope that presents a simultaneous view of real objects in the surgical field and computer-processed images superimposed in real time.

"Surgeons want to see the molecular signals with their eyes, so that they can feel confident about what is there," said journal associate editor Brian Pogue of Dartmouth College. "Too often, what they see is a report of the signals depicted in false color on a monitor. By displaying information through the surgical scope itself, the surgeon then sees the information with his or her own eyes."

Pogue said he sees the work being important in advancing the translation of research into clinical practice. "There are very few papers on this idea of augmenting the surgical field of view that the surgeon sees, yet this is a high-interest topic," he said. "This article presents a very practical idea and innovative implementation which is well done technically."

The prototype offers advantages over earlier versions of augmented microscopes. By utilizing the optical path of the stereomicroscope, it maintains full three-dimensional stereoscopic vision, which is lost in fully digital display systems.

It also retains the imaging environment familiar to surgeons, including key features of surgical microscopes such as real-time magnification and focus adjustments, camera mounting, and multiuser access.

One possible application for this augmented microscope is laser surgery. In the past, surgeons could not see the laser beam through the standard stereomicroscope, nor anatomical details in the NIR images.

The researchers also suggest that this technology will be useful in the surgical treatment of brain tumors. Surgeons aggressively removing a tumor run the risk of damaging normal brain tissue and impairing the patient's brain functions; on the other hand, incomplete removal of a tumor results in immediate relapse in 90% of patients. Being able to simultaneously see the surgical field and the contrast agent identifying cancerous tissue within the augmented microscope may allow surgeons to remove these challenging tumors more accurately.

###

The work was supported by funding from the National Institutes of Health.

Lihong Wang, Gene K. Beare Distinguished Professor of Biomedical Engineering at Washington University in St. Louis, is editor-in-chief of the Journal of Biomedical Optics. The journal is published in print and digitally in the SPIE Digital Library, which contains more than 430,000 articles from SPIE journals, proceedings, and books, with approximately 18,000 new research papers added each year.

About SPIE

SPIE is the international society for optics and photonics, an educational not-for-profit organization founded in 1955 to advance light-based science and technology. The Society serves nearly 264,000 constituents from approximately 166 countries, offering conferences and their published proceedings, continuing education, books, journals, and the SPIE Digital Library in support of interdisciplinary information exchange, professional networking, and patent precedent. SPIE provided more than $4 million in support of education and outreach programs in 2014. SPIE is a Founding Partner of the International Year of Light and Light-based Technologies and a Founding Sponsor of the U.S. National Photonics Initiative. http://www.spie.org

Media Contact

Amy Nelson
amy@spie.org
360-685-5478

 @SPIEtweets

http://spie.org/ 

Amy Nelson | EurekAlert!

More articles from Medical Engineering:

nachricht Water-filtered infrared-A (wIRA) overcomes swallowing disorders and hypersalivation – a case report
10.08.2017 | Arbeitsgemeinschaft der Wissenschaftlichen Medizinischen Fachgesellschaften e.V.

nachricht New microscope technique reveals internal structure of live embryos
08.08.2017 | University of Illinois at Urbana-Champaign

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Gold shines through properties of nano biosensors

17.08.2017 | Physics and Astronomy

Greenland ice flow likely to speed up: New data assert glaciers move over sediment, which gets more slippery as it gets wetter

17.08.2017 | Earth Sciences

Mars 2020 mission to use smart methods to seek signs of past life

17.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>