Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


New microscopy technology augments surgeon's view for greater accuracy


Real-time overlay of real and computer-generated images for cancer diagnostics, neurosurgery, more

Researchers at the University of Arizona (UA) have developed a prototype of a new microscope technology that could help surgeons work with a greater degree of accuracy. The new technology, call augmented microscopy, overlays images depicting diagnostic information such as blood flow and cancerous tissue over real images of blood vessels and other tissues and structures being viewed in the microscope.

These are custom colored dye solutions with randomly plated ICG solution: (a) visible view through microscope, (b) NIR view seen on computer monitor, and (c) augmented view seen in real time through the ocular of the augmented microscope.

Credit: © the authors, Journal of Biomedical Optics doi:10.1117/1.JBO.20.10.106002

A report on the work by Jeffrey Watson and co-authors from the UA departments of Biomedical Engineering and Surgery was published today in the Journal of Biomedical Optics, published by SPIE, the international society for optics and photonics.

Surgical microscopes are highly specialized stereomicroscopes installed on articulated mounts and provide a long working distance and functional enhancements, and are widely used in certain delicate operations, notably neurosurgery.

Within the last decade, surgical microscopes have been combined with near-infrared (NIR) fluorescence imaging, in which contrast agents are injected into tissue and their fluorescence detected in NIR scans. The scans may reveal patterns of blood flow, or differentiate cancerous from normal tissue.

But there are limitations. For example, some microscopes used in complex vascular surgeries switch between two different views: the fully optical bright-field (real) view and the computer-processed projection of NIR fluorescence. The NIR image is two-dimensional, and on its own lacks the spatial cues that would help the surgeon identify anatomical points of reference. So the surgeon must visualize how the fluorescence in the NIR image lines up with the respective anatomical structures shown in the bright-field view.

The UA researchers' article, "Augmented microscopy: Real-time overlay of bright-field and near-infrared fluorescence images" describes their prototype of an augmented stereomicroscope that presents a simultaneous view of real objects in the surgical field and computer-processed images superimposed in real time.

"Surgeons want to see the molecular signals with their eyes, so that they can feel confident about what is there," said journal associate editor Brian Pogue of Dartmouth College. "Too often, what they see is a report of the signals depicted in false color on a monitor. By displaying information through the surgical scope itself, the surgeon then sees the information with his or her own eyes."

Pogue said he sees the work being important in advancing the translation of research into clinical practice. "There are very few papers on this idea of augmenting the surgical field of view that the surgeon sees, yet this is a high-interest topic," he said. "This article presents a very practical idea and innovative implementation which is well done technically."

The prototype offers advantages over earlier versions of augmented microscopes. By utilizing the optical path of the stereomicroscope, it maintains full three-dimensional stereoscopic vision, which is lost in fully digital display systems.

It also retains the imaging environment familiar to surgeons, including key features of surgical microscopes such as real-time magnification and focus adjustments, camera mounting, and multiuser access.

One possible application for this augmented microscope is laser surgery. In the past, surgeons could not see the laser beam through the standard stereomicroscope, nor anatomical details in the NIR images.

The researchers also suggest that this technology will be useful in the surgical treatment of brain tumors. Surgeons aggressively removing a tumor run the risk of damaging normal brain tissue and impairing the patient's brain functions; on the other hand, incomplete removal of a tumor results in immediate relapse in 90% of patients. Being able to simultaneously see the surgical field and the contrast agent identifying cancerous tissue within the augmented microscope may allow surgeons to remove these challenging tumors more accurately.


The work was supported by funding from the National Institutes of Health.

Lihong Wang, Gene K. Beare Distinguished Professor of Biomedical Engineering at Washington University in St. Louis, is editor-in-chief of the Journal of Biomedical Optics. The journal is published in print and digitally in the SPIE Digital Library, which contains more than 430,000 articles from SPIE journals, proceedings, and books, with approximately 18,000 new research papers added each year.

About SPIE

SPIE is the international society for optics and photonics, an educational not-for-profit organization founded in 1955 to advance light-based science and technology. The Society serves nearly 264,000 constituents from approximately 166 countries, offering conferences and their published proceedings, continuing education, books, journals, and the SPIE Digital Library in support of interdisciplinary information exchange, professional networking, and patent precedent. SPIE provided more than $4 million in support of education and outreach programs in 2014. SPIE is a Founding Partner of the International Year of Light and Light-based Technologies and a Founding Sponsor of the U.S. National Photonics Initiative.

Media Contact

Amy Nelson


Amy Nelson | EurekAlert!

More articles from Medical Engineering:

nachricht Münster researchers make a fly’s heartbeat visible / Software automatically recognizes pulse
12.03.2018 | Westfälische Wilhelms-Universität Münster

nachricht 3-D-written model to provide better understanding of cancer spread
05.03.2018 | Purdue University

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Space observation with radar to secure Germany's space infrastructure

Satellites in near-Earth orbit are at risk due to the steady increase in space debris. But their mission in the areas of telecommunications, navigation or weather forecasts is essential for society. Fraunhofer FHR therefore develops radar-based systems which allow the detection, tracking and cataloging of even the smallest particles of debris. Satellite operators who have access to our data are in a better position to plan evasive maneuvers and prevent destructive collisions. From April, 25-29 2018, Fraunhofer FHR and its partners will exhibit the complementary radar systems TIRA and GESTRA as well as the latest radar techniques for space observation across three stands at the ILA Berlin.

The "traffic situation" in space is very tense: the Earth is currently being orbited not only by countless satellites but also by a large volume of space...

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

New solar solutions for sustainable buildings and cities

23.03.2018 | Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

Latest News

For graphite pellets, just add elbow grease

23.03.2018 | Materials Sciences

Unique communication strategy discovered in stem cell pathway controlling plant growth

23.03.2018 | Agricultural and Forestry Science

Sharpening the X-ray view of the nanocosm

23.03.2018 | Physics and Astronomy

Science & Research
Overview of more VideoLinks >>>