Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gentle sensors for diagnosing brain disorders

29.09.2016

New sensor design paves the way for safer and more effective brain monitoring.

exible, low-cost sensor technology leading to safer and improved diagnoses and treatment of brain disorders has been developed by Saudi Arabia's King Abdullah University of Science and Technology (KAUST) scientists [1].


Through Polymer Vias based 3D integration simplifies the path towards high-resolution brain machine interfaces. © 2016 KAUST

Mapping the electrical activity of the brain is critical in understanding neurological disorders, such as depression and Alzheimer’s disease. Currently, multielectrode arrays, called Michigan or Utah arrays, are used to monitor brain activity. Made from layers of conductive silicon needles, these rigid devices are inserted through the scalp to monitor the brain’s surface. The needles can cause inflammation of the tissues and so they must be removed within a year.

Muhammad Hussain and Aftab Hussain from the KAUST Integrated Nanotechnology Laboratory and Integrated Disruptive Electronic Applications Laboratory wanted to develop a soft and flexible sensor that could be placed on the surface of the brain within the intracranial space, providing better contact and reducing the risk of damage to tissues.

“Sensors require associated electronics to interface with us, and these electronics dissipate heat causing a burning effect in the brain which can permanently damage tissues,” explains Muhammad Hussain. “The challenge is to keep the electronics away from the brain.”

Working within these parameters, they fabricated a sensor made from gold electrodes encased in a polymer coating with their connections oriented vertically, and, by placing the connectors on top of the sensor and allowing them to pass through the polymer support, an integrated circuit (IC) could be attached to the flip side of the device, isolating it from the brain surface and preventing hotspots.

The intracranial space of the brain presents an area of only 64 cm2 for mapping more than 80 billion neurons, so not only is it safer to prevent the electronics from making contact with the brain, it also maximizes the number of neurons that can be monitored by the sensor array.

“The sensor is in contact with the soft tissues of the brain, where it collects activity data, and the IC is placed on top, with a soft insulating polymeric material separating them, allowing a larger area to be mapped and a reduction in the heating effect,” says Hussain.

By using state-of-the-art technology, used for fabricating integrated circuits, the researchers have developed a method that could lead to mass-produced sensors that are safer, have improved mapping capabilities, and are also robust enough for long lasting functionality.

“We are currently collaborating with Harvard-MIT Medical Institute on using the technique to improve the efficiency of the mapping interface system,” says Hussain.

Associated links

Journal information

[1] Hussain, A.M. and Hussain, M.M. Deterministic integration of out-of-plane sensor arrays for flexible electronic applications. Small, 25 July 2016 (doi: 10.1002/smll.201600952).

Michelle D'Antoni | Research SEA
Further information:
http://www.researchsea.com

More articles from Medical Engineering:

nachricht Virtual Reality in Medicine: New Opportunities for Diagnostics and Surgical Planning
07.12.2016 | Universität Basel

nachricht 3-D printed kidney phantoms aid nuclear medicine dosing calibration
06.12.2016 | Society of Nuclear Medicine

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>