Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

CT and 3-D printing aid surgical separation of conjoined twins

02.12.2015

A combination of detailed CT imaging and 3-D printing technology has been used for the first time in the surgical planning for separation of conjoined twins, according to a study presented today at the annual meeting of the Radiological Society of North America (RSNA).

Conjoined twins, or twins whose bodies are connected, account for approximately one of every 200,000 live births. Survival rates are low and separating them through surgery is extremely difficult because they often share organs and blood vessels.


This is a 3-D color segmentation of CT data with 3-D model.

Credit: Radiological Society of North America/Texas Children's Hospital

Specialists at Texas Children's Hospital in Houston brought a new approach to these challenges when they set out to surgically separate Knatalye Hope and Adeline Faith Mata, conjoined twins from Lubbock, Texas. Knatalye and Adeline were born on April 11, 2014, connected from the chest all the way down to the pelvis.

"This case was unique in the extent of fusion," said the study's lead author, Rajesh Krishnamurthy, M.D., chief of radiology research and cardiac imaging at Texas Children's Hospital. "It was one of the most complex separations ever for conjoined twins."

To prepare for the separation surgery, Dr. Krishnamurthy and colleagues performed volumetric CT imaging with a 320-detector scanner, administering intravenous contrast separately to both twins to enhance views of vital structures and help plan how to separate them to ensure survival of both children.

They used a technique known as target mode prospective EKG gating to freeze the motion of the hearts on the images and get a more detailed view of the cardiovascular anatomy, while keeping the radiation exposure low.

"The CT scans showed that the babies' hearts were in the same cavity but were not fused," Dr. Krishnamurthy said. "Also, we detected a plane of separation of the liver that the surgeons would be able to use."

The team translated the CT imaging results into a color-coded physical 3-D model with skeletal structures and supports made in hard plastic resin, and organs built from a rubber-like material. The livers were printed as separate pieces of the transparent resin, with major blood vessels depicted in white for better visibility.

The models were designed so that they could be assembled together or separated during the surgical planning process. The surgical team used the models during the exhaustive preparation process leading up to the surgery.

On February 17, a little more than 10 months after they were born, the Mata twins underwent surgical separation by a team of more than 26 clinicians, including 12 surgeons, six anesthesiologists and eight surgical nurses. The official separation took place approximately 18 hours into the 26-hour surgery.

The 3-D models proved to be an excellent source of information, as there were no major discrepancies between the models and the twins' actual anatomy.

"The surgeons found the landmarks for the liver, hearts and pelvic organs just as we had described," Dr. Krishnamurthy said. "The concordance was almost perfect."

Dr. Krishnamurthy expects the combination of volumetric CT, 3-D modeling, and 3-D printing to become a standard part of preparation for surgical separation of conjoined twins, although barriers remain to its adoption.

"The 3-D printing technology has advanced quite a bit, and the costs are declining. What's limiting it is a lack of reimbursement for these services," he said. "The procedure is not currently recognized by insurance companies, so right now hospitals are supporting the costs."

Besides assisting clinicians prepare for surgery, the 3-D model also served another important function: helping the twins' parents, Elysse and John Eric Mata, understand the process.

"When I showed the mother the model and explained the procedure, she held my hand and thanked me," Dr. Krishnamurthy recalled. "They said, 'For the first time, we understand what is going to happen with our babies.'"

Knatalye Hope returned home in May 2015 and her sister Adeline Faith came home a month later. They are both doing well and have a Facebook page, "Helping Faith & Hope Mata," with updates on their progress.

###

Co-authors on the study are Nicholas Dodd, B.S., Darrell Cass, M.D., Amrita Murali and Jayanthi Parthasarathy, B.D.S., M.S., Ph.D.

Note: Copies of RSNA 2015 news releases and electronic images will be available online at RSNA.org/press15 beginning Monday, Nov. 30.

RSNA is an association of more than 54,000 radiologists, radiation oncologists, medical physicists and related scientists, promoting excellence in patient care and health care delivery through education, research and technologic innovation. The Society is based in Oak Brook, Ill. (RSNA.org)

For patient-friendly information on CT, visit RadiologyInfo.org.

Media Contact

Linda Brooks
lbrooks@rsna.org
630-590-7762

 @rsna

http://www.rsna.org 

Linda Brooks | EurekAlert!

Further reports about: 3-D 3-D printing technology CT CT imaging RSNA blood vessels

More articles from Medical Engineering:

nachricht Novel breast tomosynthesis technique reduces screening recall rate
21.02.2017 | Radiological Society of North America

nachricht Biocompatible 3-D tracking system has potential to improve robot-assisted surgery
17.02.2017 | Children's National Health System

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

NASA's fermi finds possible dark matter ties in andromeda galaxy

22.02.2017 | Physics and Astronomy

Wintering ducks connect isolated wetlands by dispersing plant seeds

22.02.2017 | Life Sciences

Impacts of mass coral die-off on Indian Ocean reefs revealed

21.02.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>