Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cell-compatible OLEDs for use with patients

29.08.2016

Cytocompatibility studies of organic light-emitting diodes (OLEDs) have been carried out on cell cultures for the first time at the Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP to test how well OLEDs are tolerated by cells. The results offer promising prospects for the use of OLEDs in the medical field, such as in light therapy. The findings were published in a white paper entitled “Preliminary cytocompatibility studies for encapsulated OLEDs” and likewise be presented at the 4th Industry Partners Day of the Fraunhofer FEP in Dresden on September 28, 2016.

Light therapy is an important means of promoting the healing of wounds. Difficult and protracted healing processes of the skin, such as are due to chronic and infected wounds, present a challenge for treating physicians and can be positively affected by exposure to light.


Flexible OLEDs produced at Fraunhofer FEP using roll-to-roll processing

Fraunhofer FEP


Green OLED light during physical stimulation of cells (OLED and cell culture plate)

Fraunhofer FEP

The Fraunhofer FEP in Dresden has years of experience researching processes, technologies, and applications for flexible OLEDs. In order to be able to employ these area light sources for potential medical applications though, any potential toxic effects caused by the constituent materials must be precluded. No such studies on what is termed the cytocompatibility of flexible OLEDs were known of to date.

Now for the first time, the cytocompatibility of flexible OLED systems has been evaluated in a pilot study. Dr. Schönfelder, head of the Medical Applications Research Group at Fraunhofer FEP, recounts enthusiastically: “Even after electrical operation and exposure to mechanical loading by bending, no toxic substances able to alter cells diffused from the OLEDs.”

As a follow-on, studies on the influence of OLED light were conducted using in vitro cell cultures from the skin and the immune system suffering from specified damage. Initial results indicate effects of accelerated auto-recovery that could be the foundation for future therapeutic applications.

Division Director Dr. Christian May in looking ahead remarks: “We need long-term studies yet to be able to guaranty cytocompatibility during exposure to OLED light. Safe electrical connections, power supplies, control circuitry, and component perimeter seals are important aspects that we are dedicating ourselves to – before direct application to the patient is allowed.”

Detailed findings can be reviewed in the white paper entitled „Preliminary cytocompatibility studies for encapsulated OLEDs“ at http://s.fhg.de/N8L and were presented by Dr. Jacqueline Hauptmann in her talk entitled “OLED light application in medicine and cytotoxicity of the materials” during the 4th Industry Partners Day devoted to medical topics at the Fraunhofer FEP on September 28, 2016.

Registration and program materials can be found at www.fep.fraunhofer.de/ipd. Sponsorship opportunities at the event as well as participation via info kiosks are available.

Weitere Informationen:

http://s.fhg.de/i3c

Annett Arnold | Fraunhofer-Institut für Organische Elektronik, Elektronenstrahl- und Plasmatechnik FEP

Further reports about: FEP OLED OLEDs Plasmatechnik immune system power supplies toxic effects

More articles from Medical Engineering:

nachricht UTSA study describes new minimally invasive device to treat cancer and other illnesses
02.12.2016 | University of Texas at San Antonio

nachricht Earlier Alzheimer's diagnosis may be possible with new imaging compound
02.11.2016 | Washington University School of Medicine

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>