Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

HomeScience ReportsReports and NewsArchitecture and Construction

What is a passive house and how is the architecture designed?

There are many reasons to build a passive house. The most important are related to the cost advantages you enjoy by building a passive house. The architecture of a passive house is designed so that the basic needs of the home owner, with respect to energy supply, are autonomously controlled. As the term "passive" implies, regulating the energy balance requires no action on your part. This capability stems from the architecture of the house. Roughly 8,000 people in Germany have meanwhile taken advantage of this architecture to build a passive house. But how does a passive house function and what is the respective architecture basically made of? The architecture is typically designed so that the outer shell of the passive house is insulated to keep the heat from escaping outside.

The passive house runs on its own

When building a passive house, a ventilation system acts to additional recover 80 percent of the heat. The roof of a passive house is designed to capture additional heat and store it until the room temperature sinks enough so that it must be released. Related studies have shown that a passive house constantly maintains an indoor temperature of more than 20°C at an outside temperature of -14°C. A passive house provides the freedom to individualize the architecture. The owner can decide whether to build the house out of concrete/brick, wood or a combination. The architecture always depends on the architect and the individual plan. However, there are several factors to consider when building a passive house.

The characteristics of a passive house thanks to its architecture

Passive houses exhibit specific characteristics that are tied to the architecture. The external building components must be extremely well insulated in addition to carefully constructing the corners, edges, joints and other cross sections. This would otherwise lead to excessive heat loss and failure of the architecture to fulfill the desired requirements. By taking these factors into account and using the right approach to building a passive house, one can expect a minimal heat loss of only .15 watts per square meter of external surface area. If you are building a house, the architecture should be designed to maximize the energy gain through the solar cells. For this reason, the solar cells on the roof of the passive house must have a southerly orientation.

To build a passive house, it should be designed such that the respective solar collectors and heat pumps supply power to the hot water system. When building a passive house and using the appropriate architecture, you can expect to significantly lower your operating costs.

Lower the operating costs

The architecture is what makes it possible for you to build a passive house and to have a complete energy system that runs on its own. While more and more people are dreaming of building a house, it always involves high costs. With the right architecture, you can build a passive house assuming that you will benefit from significantly lower monthly operating costs. This approach allows you to build to a house that runs completely on its own thanks to the corresponding high-quality architecture . Because the architecture is so well thought-out, you can build this house under the assumption that the heating balance will regulate itself. For this reason, you can assume that building a house is a worthwhile effort.

Architecture and Construction

Here you can discover new and innovative developments from the world of building design and construction.

innovations-report offers reports and articles on a variety of topics such as building optimization, modern construction materials, energy-efficient construction, natural insulation materials and passive buildings.

Latest News:

Page anfang | 1 | 2 | 3 | 4 | 5 | ende

SCHOTT to show restoration glasses that meet modern requirements at "Monumento"

The restoration glasses TIKANA®, RESTOVER® and GOETHEGLAS will be focused by the technology group SCHOTT at its premiere at Monumento, the trade fair on monument preservation, to be held in Salzburg, Austria, from January 28 - 30, 2016 (Hall 10, Booth 124). With these types of products that are produced using authentic techniques, architects cannot only restore original historical monuments from different eras. These glasses can also be processed in many ways and thus help to meet contemporary constructional requirements and capabilities –from UV protection to thermal insulation.

The restoration of old monuments is a delicate task for a number of reasons. On the one hand, it is of high importance for the monument preservation...

26.01.2016 | nachricht Read more

Carbon Fibre-Reinforced Concrete Offers Innovative Solutions for Civil Engineering

Illuminated pavilions on campus demonstrate the use of curved shell structures made of carbon fibre-reinforced concrete, a project of the Lightweight Construction Research Group at the TU Chemnitz

Concrete which is reinforced with textiles instead of steel combines many advantages: it saves raw materials, has high potential for lightweight construction,...

11.01.2016 | nachricht Read more

Drilling like lightning

95% of the geothermal water resources in Germany are situated in crystalline rock. Existing drilling methods, however, are only able to advance slowly though this hard rock and the drill bits wear out quickly. The BINE Projektinfo brochure “Electric impulses fragment hard rock” (13/2015) presents an alternative drilling procedure. Here, a high-voltage impulse fragments the rock. This method causes little wear to the drill bits and enables up to 30% lower drilling costs.

New process uses high voltage for deep geothermal drilling

02.12.2015 | nachricht Read more

Hospital energy centre connected with heating network

Working in conjunction with Giessen’s municipal utility company, Giessen and Marburg University Hospital has become the first German hospital to integrate its energy centre into an urban district heating network. The core of the combined cooling, heating and power plant is provided by four cogeneration modules that produce electricity and heat. The BINE Projektinfo brochure 12/2015 “Energy centre supplies Giessen University Hospital” describes the initial operating experiences.

The newly developed trigeneration plant reduces CO2 by around a third

26.11.2015 | nachricht Read more

Innovative Photovoltaics – from the Lab to the Façade

Fraunhofer ISE Demonstrates New Cell and Module Technologies on its Outer Building Façade

The Fraunhofer Institute for Solar Energy Systems ISE has installed 70 photovoltaic modules on the outer façade of one of its lab buildings. The modules were...

25.11.2015 | nachricht Read more

Structure of "concrete disease" solved

When bridges, dam walls and other structures made of concrete are streaked with dark cracks after a few decades, the culprit is AAR: the alkali-aggregate reaction. Also called the "concrete disease" or even "concrete cancer", it is a chemical reaction between substances contained in the material and moisture seeping in from outside. Researchers from the Paul Scherrer Institute PSI and Empa have now solved the structure of the material produced in the course of AAR at atomic level – and have thereby discovered a previously unknown crystalline arrangement of the atoms.

 

06.11.2015 | nachricht Read more

The Growth and Decline of Cities in Germany: Novel Visualisations of Urban Change

Innovative maps that illustrate the most recent socio-demographic urban changes in the major city urban agglomerations in Germany have very recently been produced in a joint project of the School of Geography and the Environment at the University of Oxford and the Research Institute for Regional and Urban Development Dortmund (Germany).

The Research Institute for Regional and Urban Development (Institut für Landes- und Stadtentwicklungsforschung, ILS) investigates new social processes,...

29.10.2015 | nachricht Read more

Aspern: The City Next Door

Austria’s capital is spawning a new city in which buildings, the electrical grid and the electricity market will be networked to create and evaluate synergistic efficiencies. The vision behind the project: Creation of a world-class living laboratory in which energy-saving technologies and new distribution grid solutions can be tested and optimized according to the requirements of future electricity markets.

A former airfield on the northeastern outskirts of Vienna, Austria is providing a test bed for technologies that could make cities increasingly energy...

15.10.2015 | nachricht Read more

Brilliant decorative solid-state thin films for metallic coverings and facades

For the first time, the Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP will be presenting various large-area decorative solid-state thin films on metal surfaces during the V2015 (October 12 – 15, 2015, Dresden, Wyndham Garden Hotel, booth No. 5).

Metallic surfaces must be able to meet many requirements: they should, for instance, be scratch-resistant, water-repellent, matte or antibacterial. For the...

21.09.2015 | nachricht Read more

Smarter window materials can control light and energy

Researchers in the Cockrell School of Engineering at The University of Texas at Austin are one step closer to delivering smart windows with a new level of energy efficiency, engineering materials that allow windows to reveal light without transferring heat and, conversely, to block light while allowing heat transmission, as described in two new research papers.

By allowing indoor occupants to more precisely control the energy and sunlight passing through a window, the new materials could significantly reduce costs for...

23.07.2015 | nachricht Read more
Page anfang | 1 | 2 | 3 | 4 | 5 | ende

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Production of an AIDS vaccine in algae

Today, plants and microorganisms are heavily used for the production of medicinal products. The production of biopharmaceuticals in plants, also referred to as “Molecular Pharming”, represents a continuously growing field of plant biotechnology. Preferred host organisms include yeast and crop plants, such as maize and potato – plants with high demands. With the help of a special algal strain, the research team of Prof. Ralph Bock at the Max Planck Institute of Molecular Plant Physiology in Potsdam strives to develop a more efficient and resource-saving system for the production of medicines and vaccines. They tested its practicality by synthesizing a component of a potential AIDS vaccine.

The use of plants and microorganisms to produce pharmaceuticals is nothing new. In 1982, bacteria were genetically modified to produce human insulin, a drug...

Im Focus: The most accurate optical single-ion clock worldwide

Atomic clock experts from the Physikalisch-Technische Bundesanstalt (PTB) are the first research group in the world to have built an optical single-ion clock which attains an accuracy which had only been predicted theoretically so far. Their optical ytterbium clock achieved a relative systematic measurement uncertainty of 3 E-18. The results have been published in the current issue of the scientific journal "Physical Review Letters".

Atomic clock experts from the Physikalisch-Technische Bundesanstalt (PTB) are the first research group in the world to have built an optical single-ion clock...

Im Focus: Goodbye ground control: autonomous nanosatellites

The University of Würzburg has two new space projects in the pipeline which are concerned with the observation of planets and autonomous fault correction aboard satellites. The German Federal Ministry of Economic Affairs and Energy funds the projects with around 1.6 million euros.

Detecting tornadoes that sweep across Mars. Discovering meteors that fall to Earth. Investigating strange lightning that flashes from Earth's atmosphere into...

Im Focus: Flow phenomena on solid surfaces: Physicists highlight key role played by boundary layer velocity

Physicists from Saarland University and the ESPCI in Paris have shown how liquids on solid surfaces can be made to slide over the surface a bit like a bobsleigh on ice. The key is to apply a coating at the boundary between the liquid and the surface that induces the liquid to slip. This results in an increase in the average flow velocity of the liquid and its throughput. This was demonstrated by studying the behaviour of droplets on surfaces with different coatings as they evolved into the equilibrium state. The results could prove useful in optimizing industrial processes, such as the extrusion of plastics.

The study has been published in the respected academic journal PNAS (Proceedings of the National Academy of Sciences of the United States of America).

Im Focus: New study: How stable is the West Antarctic Ice Sheet?

Exceeding critical temperature limits in the Southern Ocean may cause the collapse of ice sheets and a sharp rise in sea levels

A future warming of the Southern Ocean caused by rising greenhouse gas concentrations in the atmosphere may severely disrupt the stability of the West...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Symposium on Climate Change Adaptation in Africa 2016

12.02.2016 | Event News

Travel grants available: Meet the world’s most proficient mathematicians and computer scientists

09.02.2016 | Event News

AKL’16: Experience Laser Technology Live in Europe´s Largest Laser Application Center!

02.02.2016 | Event News

 
Latest News

LIGO confirms RIT's breakthrough prediction of gravitational waves

12.02.2016 | Physics and Astronomy

Gene switch may repair DNA and prevent cancer

12.02.2016 | Life Sciences

Using 'Pacemakers' in spinal cord injuries

12.02.2016 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>