Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

HomeScience ReportsReports and NewsArchitecture and Construction

What is a passive house and how is the architecture designed?

There are many reasons to build a passive house. The most important are related to the cost advantages you enjoy by building a passive house. The architecture of a passive house is designed so that the basic needs of the home owner, with respect to energy supply, are autonomously controlled. As the term "passive" implies, regulating the energy balance requires no action on your part. This capability stems from the architecture of the house. Roughly 8,000 people in Germany have meanwhile taken advantage of this architecture to build a passive house. But how does a passive house function and what is the respective architecture basically made of? The architecture is typically designed so that the outer shell of the passive house is insulated to keep the heat from escaping outside.

The passive house runs on its own

When building a passive house, a ventilation system acts to additional recover 80 percent of the heat. The roof of a passive house is designed to capture additional heat and store it until the room temperature sinks enough so that it must be released. Related studies have shown that a passive house constantly maintains an indoor temperature of more than 20°C at an outside temperature of -14°C. A passive house provides the freedom to individualize the architecture. The owner can decide whether to build the house out of concrete/brick, wood or a combination. The architecture always depends on the architect and the individual plan. However, there are several factors to consider when building a passive house.

The characteristics of a passive house thanks to its architecture

Passive houses exhibit specific characteristics that are tied to the architecture. The external building components must be extremely well insulated in addition to carefully constructing the corners, edges, joints and other cross sections. This would otherwise lead to excessive heat loss and failure of the architecture to fulfill the desired requirements. By taking these factors into account and using the right approach to building a passive house, one can expect a minimal heat loss of only .15 watts per square meter of external surface area. If you are building a house, the architecture should be designed to maximize the energy gain through the solar cells. For this reason, the solar cells on the roof of the passive house must have a southerly orientation.

To build a passive house, it should be designed such that the respective solar collectors and heat pumps supply power to the hot water system. When building a passive house and using the appropriate architecture, you can expect to significantly lower your operating costs.

Lower the operating costs

The architecture is what makes it possible for you to build a passive house and to have a complete energy system that runs on its own. While more and more people are dreaming of building a house, it always involves high costs. With the right architecture, you can build a passive house assuming that you will benefit from significantly lower monthly operating costs. This approach allows you to build to a house that runs completely on its own thanks to the corresponding high-quality architecture . Because the architecture is so well thought-out, you can build this house under the assumption that the heating balance will regulate itself. For this reason, you can assume that building a house is a worthwhile effort.

Architecture and Construction

Here you can discover new and innovative developments from the world of building design and construction.

innovations-report offers reports and articles on a variety of topics such as building optimization, modern construction materials, energy-efficient construction, natural insulation materials and passive buildings.

Latest News:

Page anfang | 1 | 2 | 3 | 4 | 5 | ende

Modular storage tank for tight spaces

It takes large thermal storage tanks to heat apartment buildings highly efficiently. To install them, they have to fit through standard door openings in existing buildings. The BINE Projektinfo 3/2017 “Large storage tank developed for small spaces” introduces a model that makes this easy. It consists of multiple modules and has lower heat losses than the cascade storage systems previously used.

The thermal storage tank is not fully assembled until it reaches the boiler room

16.03.2017 | nachricht Read more

Smart homes will “LISTEN” to your voice

The EU project “LISTEN” creates a robust, hands-free speech control interface for smart home systems. During the recent project review meeting, the partners from Germany, Greece, and Italy demonstrated a real-time, matchbox-size, smart-home-specific natural voice interface to web services. “LISTEN” bridges the gap between microphone array networks, signal processing and speech recognition.

Wouldn´t it be convenient to control heating or cooling, lighting, and media anywhere in your home by just using your voice, without any device in your hand?...

17.01.2017 | nachricht Read more

Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

16.01.2017 | nachricht Read more

How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

11.01.2017 | nachricht Read more

Flexible protection for "smart" building and façade components

Successful conclusion of BMBF funded research project "flex 25" enables novel fluoropolymer film applications on buildings and façades

The trend in architecture and facility management is towards "smart" buildings which, by means of integrated flexible electronics, automatically react on...

30.11.2016 | nachricht Read more

Healthy living without damp and mold

The Fraunhofer Institute for Building Physics IBP has been studying the effects of mold for decades. Its scientists carry out intensive research on solutions and tools for preventing, combating, classifying and evaluating the mold caused by moisture. Using a baseline survey, the scientists are now showing how widespread mold and moisture problems are in German and European homes and what effects they have on people and buildings. In this way, they are confirming the need for continuous research and further innovative solutions.

Mold infestation is not a rare phenomenon. In Germany alone, some 10 percent of all structural damage to buildings is related to mold. If the building is not...

16.11.2016 | nachricht Read more

Rock solid: Carbon-reinforced concrete from Augsburg

Chemists at the University of Augsburg have discovered how to manufacture an extremely strong cement at reasonable cost through use of aligned short carbon fibres

Prof. Dr. Dirk Volkmer and fellow scientists from the Chair of Solid State and Materials Chemistry at the University of Augsburg have published a report in the...

11.10.2016 | nachricht Read more

Heating and cooling with environmental energy

Environmental energy provides an efficient way to supply energy to non-residential buildings such as office and administration buildings, educational and recreational facilities as well as industrial sheds. The buildings can be efficiently heated and cooled using the combined use of thermo-active building systems and heat pumps. Across 24 pages, the new BINE-Themeninfo brochure entitled "Efficiently heating & cooling non-residential buildings" (II/2016) presents low-exergy concepts for these buildings.

In these concepts, the environmental heat sources, heating and cooling technology in the building and the comfort requirements of the users are matched as...

22.09.2016 | nachricht Read more

Working comfortably in summer heat

Many existing office and administrative buildings are not air conditioned. This makes it all the more difficult to concentrate on work with increasing temperatures. Scientists have therefore analysed which measures can be used to improve user satisfaction. The BINE-Projektinfo brochure "Keeping a cool head in the summer heat" (04/2016) presents investigations and models to assess the thermal comfort.

Improving thermal comfort in non-air-conditioned buildings

02.06.2016 | nachricht Read more

NEST: building of the future is up and running

A unique research and innovation platform has opened its doors: on 23 May 2016, the modular experimental building NEST was inaugurated on the Dübendorf campus of the two research institutes Empa and Eawag. Its official goal: to accelerate the innovation process in the building and energy sector by enabling research, industry and the public sector to co-develop sustainable technologies, materials and systems and test them under real-world conditions.

A residential building, office block and experimental laboratory all rolled into one: NEST is a “living lab” in the truest sense of the word. Those who live in...

23.05.2016 | nachricht Read more
Page anfang | 1 | 2 | 3 | 4 | 5 | ende

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Supersensitive through quantum entanglement

28.06.2017 | Physics and Astronomy

X-ray photoelectron spectroscopy under real ambient pressure conditions

28.06.2017 | Physics and Astronomy

Mice provide insight into genetics of autism spectrum disorders

28.06.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>