Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

HomeScience ReportsReports and NewsArchitecture and Construction

What is a passive house and how is the architecture designed?

There are many reasons to build a passive house. The most important are related to the cost advantages you enjoy by building a passive house. The architecture of a passive house is designed so that the basic needs of the home owner, with respect to energy supply, are autonomously controlled. As the term "passive" implies, regulating the energy balance requires no action on your part. This capability stems from the architecture of the house. Roughly 8,000 people in Germany have meanwhile taken advantage of this architecture to build a passive house. But how does a passive house function and what is the respective architecture basically made of? The architecture is typically designed so that the outer shell of the passive house is insulated to keep the heat from escaping outside.

The passive house runs on its own

When building a passive house, a ventilation system acts to additional recover 80 percent of the heat. The roof of a passive house is designed to capture additional heat and store it until the room temperature sinks enough so that it must be released. Related studies have shown that a passive house constantly maintains an indoor temperature of more than 20°C at an outside temperature of -14°C. A passive house provides the freedom to individualize the architecture. The owner can decide whether to build the house out of concrete/brick, wood or a combination. The architecture always depends on the architect and the individual plan. However, there are several factors to consider when building a passive house.

The characteristics of a passive house thanks to its architecture

Passive houses exhibit specific characteristics that are tied to the architecture. The external building components must be extremely well insulated in addition to carefully constructing the corners, edges, joints and other cross sections. This would otherwise lead to excessive heat loss and failure of the architecture to fulfill the desired requirements. By taking these factors into account and using the right approach to building a passive house, one can expect a minimal heat loss of only .15 watts per square meter of external surface area. If you are building a house, the architecture should be designed to maximize the energy gain through the solar cells. For this reason, the solar cells on the roof of the passive house must have a southerly orientation.

To build a passive house, it should be designed such that the respective solar collectors and heat pumps supply power to the hot water system. When building a passive house and using the appropriate architecture, you can expect to significantly lower your operating costs.

Lower the operating costs

The architecture is what makes it possible for you to build a passive house and to have a complete energy system that runs on its own. While more and more people are dreaming of building a house, it always involves high costs. With the right architecture, you can build a passive house assuming that you will benefit from significantly lower monthly operating costs. This approach allows you to build to a house that runs completely on its own thanks to the corresponding high-quality architecture . Because the architecture is so well thought-out, you can build this house under the assumption that the heating balance will regulate itself. For this reason, you can assume that building a house is a worthwhile effort.

Architecture and Construction

Here you can discover new and innovative developments from the world of building design and construction.

innovations-report offers reports and articles on a variety of topics such as building optimization, modern construction materials, energy-efficient construction, natural insulation materials and passive buildings.

Latest News:

Page anfang | 1 | 2 | 3 | 4 | 5 | ende

Smart buildings through innovative membrane roofs and façades

The Cooperative Research Project FLEX-G started on June 1, 2017 under the federal construction technology initiative named ENERGIEWENDEBAUEN funded by the German Federal Ministry for Economic Affairs and Energy (FR 03ET1470A). The main goal of the research project is to investigate technologies for the manufacturing of translucent and transparent membrane roof and façade elements with integrated optoelectronic components. The focus lies on a switchable total energy transmittance (often referred to as the solar factor or solar heat gain and “g-value” in Europe) and on flexible solar cell integration to significantly contribute to both energy saving and power generation in buildings.

Solar modules and a variety of energy management systems are well established in small and large buildings to optimize their energy balance both by generating...

31.08.2017 | nachricht Read more

Concrete from wood

Researchers from the National Research Programme "Resource Wood" have developed a type of concrete that largely consists of wood. The building material offers the construction industry new possibilities and is based in large part on renewable resources.

Houses can be made of wood, as they were in the past – or of concrete, as they are today. To build for tomorrow, the two building methods are being combined:...

05.07.2017 | nachricht Read more

Modular storage tank for tight spaces

It takes large thermal storage tanks to heat apartment buildings highly efficiently. To install them, they have to fit through standard door openings in existing buildings. The BINE Projektinfo 3/2017 “Large storage tank developed for small spaces” introduces a model that makes this easy. It consists of multiple modules and has lower heat losses than the cascade storage systems previously used.

The thermal storage tank is not fully assembled until it reaches the boiler room

16.03.2017 | nachricht Read more

Smart homes will “LISTEN” to your voice

The EU project “LISTEN” creates a robust, hands-free speech control interface for smart home systems. During the recent project review meeting, the partners from Germany, Greece, and Italy demonstrated a real-time, matchbox-size, smart-home-specific natural voice interface to web services. “LISTEN” bridges the gap between microphone array networks, signal processing and speech recognition.

Wouldn´t it be convenient to control heating or cooling, lighting, and media anywhere in your home by just using your voice, without any device in your hand?...

17.01.2017 | nachricht Read more

Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

16.01.2017 | nachricht Read more

How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

11.01.2017 | nachricht Read more

Flexible protection for "smart" building and façade components

Successful conclusion of BMBF funded research project "flex 25" enables novel fluoropolymer film applications on buildings and façades

The trend in architecture and facility management is towards "smart" buildings which, by means of integrated flexible electronics, automatically react on...

30.11.2016 | nachricht Read more

Healthy living without damp and mold

The Fraunhofer Institute for Building Physics IBP has been studying the effects of mold for decades. Its scientists carry out intensive research on solutions and tools for preventing, combating, classifying and evaluating the mold caused by moisture. Using a baseline survey, the scientists are now showing how widespread mold and moisture problems are in German and European homes and what effects they have on people and buildings. In this way, they are confirming the need for continuous research and further innovative solutions.

Mold infestation is not a rare phenomenon. In Germany alone, some 10 percent of all structural damage to buildings is related to mold. If the building is not...

16.11.2016 | nachricht Read more

Rock solid: Carbon-reinforced concrete from Augsburg

Chemists at the University of Augsburg have discovered how to manufacture an extremely strong cement at reasonable cost through use of aligned short carbon fibres

Prof. Dr. Dirk Volkmer and fellow scientists from the Chair of Solid State and Materials Chemistry at the University of Augsburg have published a report in the...

11.10.2016 | nachricht Read more

Heating and cooling with environmental energy

Environmental energy provides an efficient way to supply energy to non-residential buildings such as office and administration buildings, educational and recreational facilities as well as industrial sheds. The buildings can be efficiently heated and cooled using the combined use of thermo-active building systems and heat pumps. Across 24 pages, the new BINE-Themeninfo brochure entitled "Efficiently heating & cooling non-residential buildings" (II/2016) presents low-exergy concepts for these buildings.

In these concepts, the environmental heat sources, heating and cooling technology in the building and the comfort requirements of the users are matched as...

22.09.2016 | nachricht Read more
Page anfang | 1 | 2 | 3 | 4 | 5 | ende

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

A whole-body approach to understanding chemosensory cells

13.12.2017 | Health and Medicine

Water without windows: Capturing water vapor inside an electron microscope

13.12.2017 | Physics and Astronomy

Cellular Self-Digestion Process Triggers Autoimmune Disease

13.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>