Technology Offerings

Injection of Spin-polarized Electrons into Semiconductors for Spintronic Applications

Written by admin-innovation

<p><strong>Background</strong><br>

The spin of charge carriers can serve as an information medium with faster components having much shorter switching times. Spin electronics or spintronics represents information by the orientation of the electron spin. To build a spin transistor it is necessary to inject spin-polarized electrons into classical semiconductors. Conventional methods for creating spin-polarized electrons involve polarization of spin created by ferromagnetic materials. </p> <p><strong>Technology</strong><br> This technology enables the injection of spin-polarized electrons into semiconductors at room temperature. This permits the production of spin-polarized materials that offer a highly efficient transition of the spin-polarized electrons. For ferromagnetic semiconductors such as Europium (II) sulfide (EuS) a high spin polarization exists at temperatures above room temperature if the ferromagnetic semiconductor interacts with additional free charge carriers. This spin-polarized ferromagnetic semiconductor is able to inject spin-polarization into a traditional (non-magnetic) semiconductor like GaAs or Si. The spin-polarized material consists therefore of multiple semiconducting and ferromagnetic semiconducting layers. Since the spin-polarized material works at room temperature extreme cooling is not required.</p> <p><strong>Benefits</strong><br> <ul> <li>Highly spin-polarized material</li> <li>Enables spin-polarization in GaAs and Si without cooling</li> <li>Room temperature operation </li> </ul> <p><strong>IP Rights</strong><br> European patent EP1388898 B1 validated in Germany<br> US patent US6,949,778B2 </p> <p><strong>Origin</strong><br> Freie Universität Berlin, Germany</p>

Further Information: PDF

ipal GmbH
Phone: +49 (0)30/2125-4820

Contact
Dr. Dirk Dantz

Comments (0)

Write a comment