
Photoacoustics Technique Detects Minimal Cancer Cells Effectively

But one of the major limitations of these technologies is their inability to detect the presence of only a few cancer cells.
Now, a research collaboration between the University of Missouri-Columbia and Mexico's Universidad de Guanajuato shows that pulsed photoacoustic techniques, which combine the high optical contrast of optical tomography with the high resolution of ultrasound, can do just that, in vitro. Most cancer cells are naturally elusive, so they used a photoacoustic enhancer to detect them.
New developments are necessary, the researchers say, to be able to properly use photoacoustic techniques to recognize different cancer cell types inside the human body or in blood or tissue samples.
Article: “An experimental and theoretical approach to the study of the photoacoustic signal produced by cancer cells” is published in AIP Advances.
Authors: Rafael Pérez Solano (1), Francisco I. Ramirez-Perez (1), Jorge A. Castorena-Gonzalez (2), Edgar Alvarado Anell (3), Gerardo Gutiérrez-Juárez (1), and Luis Polo-Parada (4, 5).
(1) División de Ciencias e Ingenierías-Campus León, Universidad de Guanajuato, México
(2) Department of Bioengineering, University of Missouri-Columbia
(3) Facultad de Ingeniería en Computación y Electrónica, Universidad De La Salle, México
(4) Department of Medical Pharmacology and Physiology, University of Missouri-Columbia
(5) Dalton Cardiovascular Research Center, University of Missouri-Columbia