By shaking an optical lattice potential, researchers in Cambridge have realized a discontinuous phase transition in a strongly correlated quantum gas, opening the door to quantum simulations of false vacuum decay in the early universe. Phase transitions are everywhere, ranging from water boiling to snowflakes melting, and from magnetic transitions in solids to cosmological phase transitions in the early universe. Particularly intriguing are quantum phase transitions that occur at temperatures close to absolute zero and are driven by quantum rather…
Often portrayed as destructive monsters that hold light captive, black holes take on a less villainous role in the latest research from NASA’s Hubble Space Telescope. A black hole at the heart of the dwarf galaxy Henize 2-10 is creating stars rather than gobbling them up. The black hole is apparently contributing to the firestorm of new star formation taking place in the galaxy. The dwarf galaxy lies 30 million light-years away, in the southern constellation Pyxis. A decade ago…
While foam is certainly desirable in the bathtub or on beer, preventing foam – for example in industrial processes – is a much-discussed topic. Often, oils or particles are added to liquids to prevent foaming. If these are harmful to health or the environment, they must be removed again using complex methods. A team of researchers at the Max Planck Institute for Polymer Research has now shown that so-called “superamphiphobic surfaces” can be used to prevent foaming. Foam formation and…
From Heinrich Hertz to Terahertz: Today, high-tech applications in optoelectronics work with ultrafast electrical oscillations, reaching frequencies up to the terahertz range. A team from the Universities of Bayreuth and Melbourne has now succeeded in developing a microscope that records videos of these oscillations. The glow of semiconductor nanocrystals makes visible the previously hidden electric fields that drive ultrafast electrical components. The researchers present their discovery in the journal Light: Science & Applications. The microscope could be used to observe…
Providing the conditions for scalable diamond quantum microprocessors and thus advancing the economic usability of quantum computing in Germany—this is what the joint project “Deutsche Brilliance” has been working on since December 1, 2021. The BMBF is funding the cooperation between Fraunhofer IAF, the start-up Quantum Brilliance and Ulm University for three years with 15.6 million euros through the “Enabling Start-up” measure. For the best possible exchange between the project partners, a team of Quantum Brilliance is located at Fraunhofer…
For quantum communication or optical computing it is important to measure and to influence in which direction a light wave is oscillating. It is now for the first time possible to manipulate this polarization of a continuous laser wave with a special glass fibre, which has mirrors attached at both ends. The effect was discovered by a team of researchers from the Max Planck Institute for the Science of Light in Erlangen together with colleagues from Switzerland, the UK, and…
Serrated edge of owl wings makes them quieter than other birds, can help inform airfoil designs. Trailing-edge noise is the dominant source of sound from aeronautical and turbine engines like those in airplanes, drones, and wind turbines. Suppressing this noise pollution is a major environmental goal for some urban areas. In Physics of Fluids, by AIP Publishing, researchers from Xi’an Jiaotong University used the characteristics of owl wings to inform airfoil design and significantly reduce the trailing-edge noise. “Nocturnal owls…
The need for development of aircraft observations of cumulus cloud physical characteristics. In precipitating clouds, the vertical cloud structure reflects the dynamic and thermal structural characteristics and microphysical characteristics of precipitating cloud clusters. Aircraft cloud detection has become a basic method to determine the characteristics of cloud particle concentrations, liquid water content, and particle spectrum distributions. The airborne Ka-band cloud radar is able to observe the macrostructure of cloud particle characteristics in precipitating clouds during the process of the aircraft…
Gas giants are made of a massive solid core surrounded by an even larger mass of helium and hydrogen. But even though these planets are quite common in the Universe, scientists still don’t fully understand how they form. Now, astrophysicists Hiroshi Kobayashi of Nagoya University and Hidekazu Tanaka of Tohoku University have developed computer simulations that simultaneously use multiple types of celestial matter to gain a more comprehensive understanding of how these colossal planets grow from tiny specks of dust….
NASA’s Curiosity rover landed on Mars on Aug. 6, 2012, and since then has roamed Gale Crater taking samples and sending the results back home for researchers to interpret. Analysis of carbon isotopes in sediment samples taken from half a dozen exposed locations, including an exposed cliff, leave researchers with three plausible explanations for the carbon’s origin — cosmic dust, ultraviolet degradation of carbon dioxide, or ultraviolet degradation of biologically produced methane. The researchers note today (Jan.17) in Proceedings of…
Scientists unravel a bit more of the mystery underlying how wave-particle interactions generate other plasma waves in Geospace. In a new study published in Physical Review Letters, researchers from Japan show that high-frequency plasma waves in the Geospace can generate low-frequency plasma waves through wave-particle interactions by heating up low-energy ions, unveiling a new energy transfer pathway in collisionless plasma. A prominent signature of plasma — a state of matter characterized by freely roaming charged particles interacting via electromagnetic forces…
New nuclear magnetic resonance technique is five orders of magnitude more sensitive. An international team of researchers with participation of the PRISMA+ Cluster of Excellence of Johannes Gutenberg University Mainz (JGU) and the Helmholtz Institute Mainz (HIM) has successfully advanced a laboratory method to search for extremely light axion-like particles (ALPs), which are possible candidates for being the elusive dark matter. The researchers use nuclear magnetic resonance techniques in their experiments: by using a new setup, they have now been…
Understanding the solar wind can help scientists predict how it will affect Earth’s satellites and astronauts in space. A new study led by University of Minnesota Twin Cities researchers, using data from NASA’s Parker Solar Probe, provides insight into what generates and accelerates the solar wind, a stream of charged particles released from the sun’s corona. Understanding how the solar wind works can help scientists predict “space weather,” or the response to solar activity—such as solar flares—that can impact both…
Scientists from TU Dresden, in cooperation with researchers at Seoul National University (SNU) and Korea University (KU), demonstrated the role of the re-use of photons (known as ‘photon recycling’) and light scattering effects in perovskite solar cells, providing a pathway towards high-efficiency solar energy conversion. The study has been published in the renowned journal ‘Science Advances’. Metal halide perovskites are receiving great attention as next-generation semiconductors for solar energy conversion. Since the first demonstration of 3.8% efficiency in 2009, efficiencies…
Gas giant is much closer to Earth than others like it. A UC Riverside astronomer and a group of eagle-eyed citizen scientists have discovered a giant gas planet hidden from view by typical stargazing tools. The planet, TOI-2180 b, has the same diameter as Jupiter, but is nearly three times more massive. Researchers also believe it contains 105 times the mass of Earth in elements heavier than helium and hydrogen. Nothing quite like it exists in our solar system. Details…
… to create dissipationless flow. A tunable platform made from atomically thin materials may help researchers figure out how to create a robust quantum condensate that can flow without losing energy. Electrons flowing through power lines and computers inevitably encounter resistance; when they do, they lose some of their energy, which dissipates as heat. That’s why laptops get hot after being used for too long and why the server farms that power the cloud require so much air conditioning to…