Physics & Astronomy

Webb Telescope Finds Oldest Galaxy Ever: JADES-GS-z14-0!

This infrared image from NASA’s James Webb Space Telescope was taken by the onboard Near-Infrared Camera for the JWST Advanced Deep Extragalactic Survey, or JADES, program. The NIRCam data was used to determine which galaxies to study further with spectroscopic observations. One such galaxy, JADES-GS-z14-0 (shown in the pullout), was determined to be at a redshift of 14.3, making it the current record-holder for most distant known galaxy. This corresponds to a time less than 300 million years after the big bang. Image Credit: NASA, ESA, CSA, STScI, Brant Robertson (UC Santa Cruz), Ben Johnson (CfA), Sandro Tacchella (Cambridge), Marcia Rieke (University of Arizona), Daniel Eisenstein (CfA), Phill Cargile (CfA)

This infrared image from NASA’s James Webb Space Telescope was taken by the onboard Near-Infrared Camera for the JWST Advanced Deep Extragalactic Survey, or JADES, program. The NIRCam data was used to determine which galaxies to study further with spectroscopic observations. One such galaxy, JADES-GS-z14-0 (shown in the pullout), was determined to be at a redshift of 14.3, making it the current record-holder for most distant known galaxy. This corresponds to a time less than 300 million years after the big bang. Image Credit: NASA, ESA, CSA, STScI, Brant Robertson (UC Santa Cruz), Ben Johnson (CfA), Sandro Tacchella (Cambridge), Marcia Rieke (University of Arizona), Daniel Eisenstein (CfA), Phill Cargile (CfA)

University of Arizona astronomers have learned more about a surprisingly mature galaxy that existed when the universe was just less than 300 million years old – just 2% of its current age.

What Does the James Webb Telescope Tell Us About the Universe?

Ever since the launch of the James Webb Telescope, it has sailed across the starry universe, discovering galaxies formed around thirteen billion years ago—almost the inception of time itself! It possesses advanced infrared capabilities, much more evolved than the Hubble Space Telescope. It studies the cosmic activities and captures light from the initial galaxies formed after the Big Bang Theory.

These observations help scientists learn about the expansion of galaxies, stars, and planetary systems. The telescope provides a clearer picture of the universe’s infancy, giving us a personal tour back in time and space!

JADES-GS-z14-0— The Universe’s Possibly Earliest Chapter!

Observed by NASA’s James Webb Space Telescope, the galaxy – designated JADES-GS-z14-0 – is unexpectedly bright and chemically complex for an object from this primordial era, the researchers said. This provides a rare glimpse into the universe’s earliest chapter.

The findings, published in the journal Nature Astronomy, build upon the researchers’ previous discovery, reported in 2024, of JADES-GS-z14-0 as the most distant galaxy ever observed. While the initial discovery established the galaxy’s record-breaking distance and unexpected brightness, this new research delves deeper into its chemical composition and evolutionary state.

The work was done as part of the JWST Advanced Deep Extragalactic Survey, or JADES, a major James Webb Space Telescope program designed to study distant galaxies.

This wasn’t simply stumbling upon something unexpected, said Kevin Hainline, co-author of the new study and an associate research professor at the U of A Steward Observatory. The survey was deliberately designed to find distant galaxies, but this one broke the team’s records in ways they didn’t anticipate – it was intrinsically bright and had a complex chemical composition that was totally unexpected so early in the universe’s history.

“It’s not just a tiny little nugget. It’s bright and fairly extended for the age of the universe when we observed it,” Hainline said.

“The fact that we found this galaxy in a tiny region of the sky means that there should be more of these out there,” said lead study author Jakob Helton, a graduate researcher at Steward Observatory. “If we looked at the whole sky, which we can’t do with JWST, we would eventually find more of these extreme objects.”

The research team used multiple instruments on board JWST, including the Near Infrared Camera, or NIRCam, whose construction was led by U of A Regents Professor of Astronomy Marcia Rieke. Another instrument on the telescope – the Mid-Infrared Instrument, or MIRI, revealed something extraordinary: significant amounts of oxygen.

In astronomy, anything heavier than helium is considered a “metal,” Helton said. Such metals require generations of stars to produce. The early universe contained only hydrogen, helium and trace amounts of lithium. But the discovery of substantial oxygen in the JADES-GS-z14-0 galaxy suggests the galaxy had been forming stars for potentially 100 million years before it was observed.

To make oxygen, the galaxy must have started out very early on, because it would have had to form a generation of stars, said George Rieke, Regents Professor of Astronomy and the study’s senior author. Those stars must have evolved and exploded as supernovae to release oxygen into interstellar space, from which new stars would form and evolve.

“It’s a very complicated cycle to get as much oxygen as this galaxy has. So, it is genuinely mind boggling,” Rieke said.

The finding suggests that star formation began even earlier than scientists previously thought, which pushes back the timeline for when the first galaxies could have formed after the Big Bang.

The observation required approximately nine days of telescope time, including 167 hours of NIRCam imaging and 43 hours of MIRI imaging, focused on an incredibly small portion of the sky.

The U of A astronomers were lucky that this galaxy happened to sit in the perfect spot for them to observe with MIRI. If they had pointed the telescope just a fraction of a degree in any direction, they would have missed getting this crucial mid-infrared data, Helton said.

“Imagine a grain of sand at the end of your arm. You see how large it is on the sky – that’s how large we looked at,” Helton said.

The existence of such a developed galaxy so early in cosmic history serves as a powerful test case for theoretical models of galaxy formation.

“Our involvement here is a product of the U of A leading in infrared astronomy since the mid-’60s, when it first started. We had the first major infrared astronomy group over in the Lunar and Planetary lab, with Gerard Kuiper, Frank Low and Harold Johnson,” Rieke said.

As humans gain the ability to directly observe and understand galaxies that existed during the universe’s infancy, it can provide crucial insights into how the universe evolved from simple elements to the complex chemistry necessary for life as we know it.

“We’re in an incredible time in astronomy history,” Hainline said. “We’re able to understand galaxies that are well beyond anything humans have ever found and see them in many different ways and really understand them. That’s really magic.”

Original Source: https://news.arizona.edu/news/james-webb-space-telescope-reveals-unexpected-complex-chemistry-primordial-galaxy

Expert Contact
Jakob Helton
University of Arizona
jakobhelton@arizona.edu

Original Publication
Jakob M. Helton, George H. Rieke, Stacey Alberts, Zihao Wu, Daniel J. Eisenstein, Kevin N. Hainline, Stefano Carniani, Zhiyuan Ji, William M. Baker, Rachana Bhatawdekar, Andrew J. Bunker, Phillip A. Cargile, Stéphane Charlot, Jacopo Chevallard, Francesco D’Eugenio, Eiichi Egami, Benjamin D. Johnson, Gareth C. Jones, Jianwei Lyu, Roberto Maiolino, Pablo G. Pérez-González, Marcia J. Rieke, Brant Robertson, Aayush Saxena, Jan Scholtz, Irene Shivaei, Fengwu Sun, Sandro Tacchella, Lily Whitler, Christina C. Williams, Christopher N. A. Willmer, Chris Willott, Joris Witstok & Yongda Zhu
Journal: Nature Astronomy
Method of Research: Observational study
Article Title: Photometric detection at 7.7 μm of a galaxy beyond redshift 14 with JWST/MIRI
Article Publication Date: 7-Mar-2025
DOI: 10.1038/s41550-025-02503-z

Media Contact
Niranjana Sahasranamam Rajalakshmi
University of Arizona
niranjanar@arizona.edu
Cell: 9174153497

Source: EurekAlert!

What Was the Greatest Discovery of the James Webb Telescope?

Distant galaxies, such as the identification of JADES-GS-z14-0, have been a fascinating discovery by the James Webb Telescope. This $10bn telescope delves into the mysteries of the universe with galaxies and black holes growing at a rapid speed. Further discoveries have also suggested the possibility of the earliest stars being considerably more radiant and galaxies being rather larger than the present ones.

Studies on the formation of solar systems similar to Earth’s have sparked hopes of exploring human-like life forms, which will change the trajectory of science discoveries on a whole new level.

Reaching for the Stars

By discovering galaxies such as JADES-GS-z14-0, the James Webb telescope strives to expand its reach to finding similar life forms, such as aliens living in other galaxies. Due to its exceptional infrared sensitivity and resolution, the telescope can detect potential planets based on the chemical compositions of different planetary atmospheres.

Unraveling the universe’s secrets helps scientists answer the most complex and puzzling mysteries of space. The telescope’s ability to push through cosmic boundaries and explain the earliest formation of galaxies spells promise on reshaping our understanding of the universe.



Comments (0)

Write a comment