Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Unexpected connection: Rotation reversal tied to energy confinement saturation

11.11.2011
News from the 53rd Annual Meeting of the APS Division of Plasma Physics

Research on the Alcator C-Mod experiment at MIT has made an unexpected connection between two seemingly unrelated but important phenomena observed in tokamak plasmas: spontaneous plasma rotation and the global energy confinement of the plasma.


Plasma fluctuations, that accompany the low density, low confinement regime and disappear promptly at the rotation reversal may provide the link between these two seemingly disparate phenomena. Credit: John Rice, MIT

Self-generated flows, the spontaneous plasma rotation which arises even when there is no external momentum input, can have a strong beneficial effect on plasma transport and stability. But in a fusion reactor, unlike most current experiments, there will be little or no external rotation drive—thus it is crucial to understand and be able to predict plasma rotation under these conditions. In the discharges studied at Alcator C-Mod, the flows can reverse direction at a very precise transition point, depending on plasma density and current.

This flow reversal turns out to be tightly connected to the global energy confinement of the plasma. Since the early days of tokamak research (1970s), it was known that the energy confinement time (the ratio of the energy content of the plasma and the total input power) increased as the density of the plasma increased. This generated a great deal of excitement since one of the goals of fusion research was to operate at high density with good confinement, so this improvement was a bonus. At high enough density, however, the energy confinement stopped increasing.

The results of these experiments suggest that energy confinement and rotation reversal are closely related. At low density, where the energy confinement time increases with the density, the plasma rotates in one direction at roughly +5 km/s. Then at the critical density, the rotation direction reverses direction to values around -20 km/s and the energy confinement saturates. The critical density depends on plasma conditions, increasing with plasma current and decreasing with machine size.

These observations reveal the fundamental connection between the two phenomena and how they both depend on the nature of the underlying plasma turbulence. One hypothesis is that at low density, the turbulence is driven by trapped electron modes, which strongly degrade the confinement and which propagate in a particular direction. As the density is raised, these modes are suppressed, and turbulence driven by ion temperature gradients dominates. These modes at higher density regulate the confinement and propagate in the opposite direction. Evidence for this explanation is emerging from careful measurements of plasma fluctuations.

Abstract:

NI2.00006 Rotation Reversal and Energy Confinement Saturation in Alcator C-Mod Ohmic L-mode Plasmas: A Novel Transport Bifurcation
Session NI2: Transport of Momentum and Particles,
Ballroom BD, Wednesday, November 16, 2011, 12:00PM:30PM

Saralyn Stewart | EurekAlert!
Further information:
http://www.aps.org

More articles from Physics and Astronomy:

nachricht Searching for disappeared anti-matter: A successful start to measurements with Belle II
26.03.2019 | Max Planck Institute for Physics

nachricht Extremely accurate measurements of atom states for quantum computing
26.03.2019 | Penn State

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New gene potentially involved in metastasis identified

Gene named after Roman goddess Minerva as immune cells get stuck in the fruit fly’s head

Cancers that display a specific combination of sugars, called T-antigen, are more likely to spread through the body and kill a patient. However, what regulates...

Im Focus: The taming of the light screw

DESY and MPSD scientists create high-order harmonics from solids with controlled polarization states, taking advantage of both crystal symmetry and attosecond electronic dynamics. The newly demonstrated technique might find intriguing applications in petahertz electronics and for spectroscopic studies of novel quantum materials.

The nonlinear process of high-order harmonic generation (HHG) in gases is one of the cornerstones of attosecond science (an attosecond is a billionth of a...

Im Focus: Magnetic micro-boats

Nano- and microtechnology are promising candidates not only for medical applications such as drug delivery but also for the creation of little robots or flexible integrated sensors. Scientists from the Max Planck Institute for Polymer Research (MPI-P) have created magnetic microparticles, with a newly developed method, that could pave the way for building micro-motors or guiding drugs in the human body to a target, like a tumor. The preparation of such structures as well as their remote-control can be regulated using magnetic fields and therefore can find application in an array of domains.

The magnetic properties of a material control how this material responds to the presence of a magnetic field. Iron oxide is the main component of rust but also...

Im Focus: Self-healing coating made of corn starch makes small scratches disappear through heat

Due to the special arrangement of its molecules, a new coating made of corn starch is able to repair small scratches by itself through heat: The cross-linking via ring-shaped molecules makes the material mobile, so that it compensates for the scratches and these disappear again.

Superficial micro-scratches on the car body or on other high-gloss surfaces are harmless, but annoying. Especially in the luxury segment such surfaces are...

Im Focus: Stellar cartography

The Potsdam Echelle Polarimetric and Spectroscopic Instrument (PEPSI) at the Large Binocular Telescope (LBT) in Arizona released its first image of the surface magnetic field of another star. In a paper in the European journal Astronomy & Astrophysics, the PEPSI team presents a Zeeman- Doppler-Image of the surface of the magnetically active star II Pegasi.

A special technique allows astronomers to resolve the surfaces of faraway stars. Those are otherwise only seen as point sources, even in the largest telescopes...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Modelica Conference with 330 visitors from 21 countries at OTH Regensburg

11.03.2019 | Event News

Selection Completed: 580 Young Scientists from 88 Countries at the Lindau Nobel Laureate Meeting

01.03.2019 | Event News

LightMAT 2019 – 3rd International Conference on Light Materials – Science and Technology

28.02.2019 | Event News

 
Latest News

Searching for disappeared anti-matter: A successful start to measurements with Belle II

26.03.2019 | Physics and Astronomy

Extremely accurate measurements of atom states for quantum computing

26.03.2019 | Physics and Astronomy

Listening to the quantum vacuum

26.03.2019 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>