Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Spin lasers facilitate rapid data transfer

05.04.2019

So-called spin lasers may potentially accelerate data transfer in optical fiber cables to a considerable extent, while reducing energy consumption at the same time

Engineers at Ruhr-Universität Bochum have developed a novel concept for rapid data transfer via optical fibre cables. In current systems, a laser transmits light signals through the cables and information is coded in the modulation of light intensity. The new system, a semiconductor spin laser, is based on a modulation of light polarisation instead.


The polarization describes a light wave's oscillation direction. Linear polarization (red, blue): the vector describing the light wave's electric field oscillates in a fixed plane. Circular polarization can be described by a superposition of two linear perpendicularly polarized light waves. The electric field vector rotates around the propagation direction. If the frequencies of the overlapping fields are different, oscillating circular polarization is the result (black). The circular polarization degree (green) is modulated depending on the frequency difference. T is the cycle duration of this modulation.

Credit: RUB, Chair of Photonics and Terahertz Technology

Usage Restrictions: This image may only be used for reporting about the Ruhr-Universitaet Bochum in the context of the press release "Spin lasers facilitate rapid data transfer" published in April 2019.


Spin lasers whose oscillation frequency can be mechanically controlled via the mount. Electrical contact can be made via an adjustable needle.

Credit: RUB, Kramer

Usage Restrictions: This image may only be used for reporting about the Ruhr-Universitaet Bochum in the context of the press release "Spin lasers facilitate rapid data transfer" published in April 2019.

Published on 3 April 2019 in the journal Nature, the study demonstrates that spin lasers have the capacity of working at least five times as fast as the best traditional systems, while consuming only a fraction of energy. Unlike other spin-based semiconductor systems, the technology potentially works at room temperature and doesn't require any external magnetic fields.

The Bochum team at the Chair of Photonics and Terahertz Technology implemented the system in collaboration with colleagues from Ulm University and the University at Buffalo.

Rapid data transfer is currently an energy guzzler

Due to physical limitations, data transfer that is based on a modulation of light intensity without utilizing complex modulation formats can only reach frequencies of around 40 to 50 gigahertz. In order to achieve this speed, high electrical currents are necessary.

"It's a bit like a Porsche where fuel consumption dramatically increases if the car is driven fast," compares Professor Martin Hofmann, one of the engineers from Bochum. "Unless we upgrade the technology soon, data transfer and the Internet are going to consume more energy than we are currently producing on Earth." Together with Dr. Nils Gerhardt and PhD student Markus Lindemann, Martin Hofmann is therefore researching into alternative technologies.

Circularly polarised light as information carrier

Provided by Ulm University, the lasers, which are just a few micrometres in size, were used by the researchers to generate a light wave whose oscillation direction changes periodically in a specific way. The result is circularly polarised light that is formed when two linear perpendicularly polarised light waves overlap.

In linear polarisation, the vector describing the light wave's electric field oscillates in a fixed plane. In circular polarisation, the vector rotates around the direction of propagation. The trick: when two linearly polarised light waves have different frequencies, the process results in oscillating circular polarisation where the oscillation direction reverses periodically - at a user-defined frequency of over 200 gigahertz.

Speed limit as yet undetermined

"We have experimentally demonstrated that oscillation at 200 gigahertz is possible," describes Hofmann. "But we don't know how much faster it can become, as we haven't found a theoretical limit yet."

The oscillation alone does not transport any information; for this purpose, the polarisation has to be modulated, for example by eliminating individual peaks. Hofmann, Gerhardt and Lindemann have verified in experiments that this can be done in principle. In collaboration with the team of Professor Igor ?uti? and PhD student Gaofeng Xu from the University at Buffalo, they used numerical simulations to demonstrate that it is theoretically possible to modulate the polarisation and, consequently, the data transfer at a frequency of more than 200 gigahertz.

The generation of a modulated circular polarisation

Two factors are decisive in order to generate a modulated circular polarisation degree: the laser has to be operated in a way that it emits two perpendicular linearly polarised light waves simultaneously, the overlap of which results in circular polarisation. Moreover, the frequencies of the two emitted light waves have to differ enough to facilitate high-speed oscillation.

The laser light is generated in a semiconductor crystal, which is injected with electrons and electron holes. When they meet, light particles are released. The spin - an intrinsic form of angular momentum - of the injected electrons is indispensable in order to ensure the correct polarisation of light. Only if the electron spin is aligned in a certain way, the emitted light has the required polarisation - a challenge for the researchers, as spin alignment changes rapidly. This is why the researchers have to inject the electrons as closely as possible to the spot within the laser where the light particle is to be emitted. Hofmann's team has already applied for a patent with their idea of how this can be accomplished using a ferromagnetic material.

Frequency difference through double refraction

The frequency difference in the two emitted light waves that is required for oscillation is generated using a technology provided by the Ulm-based team headed by Professor Rainer Michalzik. The semiconductor crystal used for this purpose is birefringent. Accordingly, the refractive indices in the two perpendicularly polarised light waves emitted by the crystal differ slightly. As a result, the waves have different frequencies. By bending the semiconductor crystal, the researchers are able to adjust the difference between the refractive indices and, consequently, the frequency difference. That difference determines the oscillation speed, which may eventually become the foundation of accelerated data transfer.

"The system is not ready for application yet," concludes Martin Hofmann. "The technology has still to be optimised. By demonstrating the potential of spin lasers, we wish to open up a new area of research."

Media Contact

Nils Gerhardt
nils.gerhardt@rub.de
49-234-322-3051

 @ruhrunibochum

http://www.ruhr-uni-bochum.de 

Nils Gerhardt | EurekAlert!

More articles from Physics and Astronomy:

nachricht Colloidal Quantum Dot Photodetectors can now see further than before
21.01.2020 | ICFO-The Institute of Photonic Sciences

nachricht Compact broadband acoustic absorber with coherently coupled weak resonances
21.01.2020 | Science China Press

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A new look at 'strange metals'

For years, a new synthesis method has been developed at TU Wien (Vienna) to unlock the secrets of "strange metals". Now a breakthrough has been achieved. The results have been published in "Science".

Superconductors allow electrical current to flow without any resistance - but only below a certain critical temperature. Many materials have to be cooled down...

Im Focus: Programmable nests for cells

KIT researchers develop novel composites of DNA, silica particles, and carbon nanotubes -- Properties can be tailored to various applications

Using DNA, smallest silica particles, and carbon nanotubes, researchers of Karlsruhe Institute of Technology (KIT) developed novel programmable materials....

Im Focus: Miniature double glazing: Material developed which is heat-insulating and heat-conducting at the same time

Styrofoam or copper - both materials have very different properties with regard to their ability to conduct heat. Scientists at the Max Planck Institute for Polymer Research (MPI-P) in Mainz and the University of Bayreuth have now jointly developed and characterized a novel, extremely thin and transparent material that has different thermal conduction properties depending on the direction. While it can conduct heat extremely well in one direction, it shows good thermal insulation in the other direction.

Thermal insulation and thermal conduction play a crucial role in our everyday lives - from computer processors, where it is important to dissipate heat as...

Im Focus: Fraunhofer IAF establishes an application laboratory for quantum sensors

In order to advance the transfer of research developments from the field of quantum sensor technology into industrial applications, an application laboratory is being established at Fraunhofer IAF. This will enable interested companies and especially regional SMEs and start-ups to evaluate the innovation potential of quantum sensors for their specific requirements. Both the state of Baden-Württemberg and the Fraunhofer-Gesellschaft are supporting the four-year project with one million euros each.

The application laboratory is being set up as part of the Fraunhofer lighthouse project »QMag«, short for quantum magnetometry. In this project, researchers...

Im Focus: How Cells Assemble Their Skeleton

Researchers study the formation of microtubules

Microtubules, filamentous structures within the cell, are required for many important processes, including cell division and intracellular transport. A...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

11th Advanced Battery Power Conference, March 24-25, 2020 in Münster/Germany

16.01.2020 | Event News

Laser Colloquium Hydrogen LKH2: fast and reliable fuel cell manufacturing

15.01.2020 | Event News

„Advanced Battery Power“- Conference, Contributions are welcome!

07.01.2020 | Event News

 
Latest News

A new look at 'strange metals'

21.01.2020 | Materials Sciences

Body's natural signal carriers can help melanoma spread

21.01.2020 | Health and Medicine

Structual color barcode micromotors for multiplex biosensing

21.01.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>