Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Putting a quantum gas through its phases

03.07.2018

A versatile experimental platform for studying the complex phases of quantum systems characterized by two order parameters

As a physical system undergoes a phase transition, it typically becomes more --- or, less --- ordered. For instance, when a piece of iron is heated to above the Curie temperature, the strong ferromagnetic alignment of the elementary magnetic dipole moments gives way to much weaker paramagnetic alignment.


Phase diagrams showing the four different regions observed in the experiment: white -- superfluid without photons; red and yellow -- photons in only one of the cavities; blue -- photons in both cavities simultaneously (mixed phase). As the coupling between the orders is increased, the mixed-phase regime (blue) becomes increasingly favourable.

Credit: Esslinger group, ETH Zurich (adapted from doi: 10.1038/s41563-018-0118-1)

Such changes are well described in the general framework of order parameters, provided by the Landau theory of phase transitions. However, many materials of current fundamental and technological interest are characterised by more than one order parameter. And here the situation can become extraordinarily complex rather quickly, in particular when the different orders interact with one another.

The traditional route to gaining an understanding of such complex quantum systems is, simply speaking, to carefully explore the response to changes in external conditions and to various probes, and thus to map out the phase diagram of the system. A complementary approach is now presented by Tobias Donner and his team in the group of Tilman Esslinger in the Department of Physics of ETH Zurich.

They control all relevant microscopic parameters of a quantum system governed by two coupled order parameters and therefore can essentially construct, and modify, the phase diagram from bottom up, as they report in a paper published today in the journal Nature Materials.

Phenomenological models that reproduce the experimentally determined phase diagrams of materials with one or more ordering tendencies have provided deep insight into the behaviour of a variety of systems, such as multiferroics --- where a material exhibits simultaneously ferromagnetism and ferroelectrism, opening the door to new functionality --- or certain families of superconductors.

However, the microscopic processes underlying the formation of macroscopic order in these systems remain often unknown. This gap in understanding limits the predictive power of phenomenological models and at the same time makes it difficult to know just how a given material should be modified to obtain desired properties.

Hence the appeal of the approach taken by Donner and his colleagues, who started not with a specific system and its phenomenological description, but with a flexible quantum system whose relevant microscopic parameters can be controlled with high accuracy, and be tuned across a broad range of values, enabling the realization of diverse scenarios.

To create such a versatile platform, the team optically trapped a Bose-Einstein condensate (BEC) at the intersection of two optical cavity modes (see the figure). In this configuration, the BEC can crystallise in two different patterns, each of which is associated with a different order parameter.

Depending on the experimental setting, the two orders either competed with one another --- forcing the system into one of the two patterns (red and yellow) --- or to coexists, leading to a new coupled phase (blue), where the two orders do not simply add, but give rise to a more complex spatial arrangement. The extent of this mixed-order phase can be controlled as well, to favour regimes of mutual exclusion or of mutual enhancement.

Whereas these particular phases have no known direct role in practical materials, the approach established with these experiments can be modified to simulate in the future properties of materials that are technologically highly relevant indeed.

In particular, in cuprate high-temperature superconductors coupled spin and charge order are know to have an important, yet not fully understood role. The sort of experiments now pioneered by the ETH physicists should offer a unique tool to explore such phases --- and various others --- starting from a 'clean' quantum system with well-controlled and widely tunable interactions.

Media Contact

Andreas Trabesinger
trabi@ethz.ch
41-791-289-860

 @ETH_physics

https://www.phys.ethz.ch/ 

Andreas Trabesinger | EurekAlert!
Further information:
https://www.phys.ethz.ch/news-and-events/d-phys-news/2018/07/putting-a-quantum-gas-through-its-phases.html
http://dx.doi.org/10.1038/s41563-018-0118-1

More articles from Physics and Astronomy:

nachricht UNH scientists help provide first-ever views of elusive energy explosion
16.11.2018 | University of New Hampshire

nachricht NASA keeps watch over space explosions
16.11.2018 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

Purdue cancer identity technology makes it easier to find a tumor's 'address'

16.11.2018 | Health and Medicine

Good preparation is half the digestion

16.11.2018 | Life Sciences

Microscope measures muscle weakness

16.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>