Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New angle on vision

08.11.2001


We judge distance from the ground up.
© Photodisc


Our brains use angular measurements to decide how far away objects are.

Even if trigonometry wasn’t your strong suit in school, your brain uses it constantly. You judge distance by measuring the angle between the ground and your line of sight to an object, a new study shows. The finding could improve the design of robots and artificial vision systems1.

Volunteers who looked through prisms that increased this angle thought objects were closer than they really were, missing them when throwing beanbags or trying to walk to them blindfolded.



Some prism-wearing participants even leaned forward, imagining that the ground was tilted away from them. "They tried to adjust their body perpendicular to the perceived ground surface," says Teng Leng Ooi of the Southern College of Optometry in Memphis, Tennessee, a member of the research team.

After just 20 minutes, volunteers adjusted to the distortion and judged distances correctly. This suggests that the brain possesses a ’plastic’ mechanism to tune its vision system to a constantly changing environment, the researchers say. When volunteers took the prisms off, they temporarily went to the opposite extreme, overestimating distances.

The experiments take a more "ecological" approach to vision processing than a lot of previous research, says Hal Sedgwick, who studies visual perception at the SUNY College of Optometry in New York City. "Rather than thinking of perception as occurring through an empty, abstract space, this looks at it from the point of view of an organism living in an environment, locating objects relative to the ground."


The long view

The idea that humans use the angle with the ground to measure distance is an old one. Ancient Chinese artists drew distant objects higher in the field of view, unlike European artists who generally relied on perspective, in which lines meet at infinity. The eleventh-century Arabic scholar Alhazen, whom some credit with having invented the scientific method, also hypothesized that humans use angles with the ground to judge distances.

Alhazen’s idea faded from attention over the years, and was resurrected only in the middle of the twentieth century, when psychologist James Gibson independently reached the same conclusion while helping to train pilots during World War II. Since then, however, the theory has lacked direct evidence.

For this reason, "this new study is quite important work," says Sedgwick. Ooi and colleagues have, he believes, produced "convincing evidence supporting the ground theory".

Understanding how humans process vision could help engineers to design more realistic virtual-reality systems and build robots that can navigate their environment better, Ooi suggests. It could even help people suffering from brain damage that interferes with their distance estimation, she says. "Research to elucidate space vision should help us predict the problems encountered by brain-injured patients, and to fix their problems through rehabilitation or compensatory robotic devices."

References

  1. Ooi, T. L. et al. Distance determined by the angular declination below the horizon. Nature, 414, 197 - 200, (2001).


ERICA KLARREICH | © Nature News Service
Further information:
http://www.nature.com/nsu/011108/011108-11.html

More articles from Interdisciplinary Research:

nachricht Investigating cell membranes: researchers develop a substance mimicking a vital membrane component
25.05.2018 | Westfälische Wilhelms-Universität Münster

nachricht New approach: Researchers succeed in directly labelling and detecting an important RNA modification
30.04.2018 | Westfälische Wilhelms-Universität Münster

All articles from Interdisciplinary Research >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>