Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

People recall information better through virtual reality, says new UMD study

14.06.2018

University of Maryland researchers conducted one of the first in-depth analyses on whether people recall information better through virtual reality, as opposed to desktop computers

While the use of virtual reality (VR) for gaming and entertainment continues to grow, the technology also shows promise for changing the landscape of industries such as medicine, education and workforce training.


University of Maryland researchers conducted one of the first in-depth analyses on whether people recall information better through virtual reality, as opposed to desktop computers.

Credit: John T. Consoli / University of Maryland

With this recent emphasis on the use of VR in high-impact areas, University of Maryland researchers conducted one of the first in-depth analyses on whether people learn better through virtual, immersive environments, as opposed to more traditional platforms like a two-dimensional desktop computer or hand-held tablet.

The researchers found that people remember information better if it is presented to them in a virtual environment. The results of the study were recently published in the journal Virtual Reality.

... more about:
»UMD »Virtual Reality »computer science

"This data is exciting in that it suggests that immersive environments could offer new pathways for improved outcomes in education and high-proficiency training," says Amitabh Varshney, professor of computer science and dean of the College of Computer, Mathematical, and Natural Sciences at UMD. Varshney leads several major research efforts on the UMD campus involving virtual and augmented reality (AR), including close collaboration with health care professionals interested in developing AR-based diagnostic tools for emergency medicine and VR training for surgical residents.

In addition to Varshney, the paper's authors include Catherine Plaisant, a senior research scientist in the University of Maryland Institute for Advanced Computer Studies, and Eric Krokos, a doctoral student in computer science.

For the study, the UMD team used the concept of a "memory palace," where people recall an object or item by placing it in an imaginary physical location like a building or town. This method--researchers refer to it as spatial mnemonic encoding--has been used since classical times, taking advantage of the human brain's ability to spatially organize thoughts and memories.

"Humans have always used visual-based methods to help them remember information, whether it's cave drawings, clay tablets, printed text and images, or video," says Krokos, who was lead author on the paper. "We wanted to see if virtual reality might be the next logical step in this progression."

For the study, the UMD researchers recruited 40 volunteers--mostly UMD students unfamiliar with virtual reality. The researchers split the participants into two groups: one viewed information first via a VR head-mounted display and then on a desktop; the other did the opposite.

Both groups received printouts of well-known faces--including Abraham Lincoln, the Dalai Lama, Arnold Schwarzenegger and Marilyn Monroe--and familiarized themselves with the images. Next, the researchers showed the participants the faces using the memory palace format with two imaginary locations: an interior room of an ornate palace and an external view of a medieval town. Both of the study groups navigated each memory palace for five minutes. Desktop participants used a mouse to change their viewpoint, while VR users turned their heads from side to side and looked up and down.

Next, Krokos asked the users to memorize the location of each of the faces shown. Half the faces were positioned in different locations within the interior setting--Oprah Winfrey appeared at the top of a grand staircase; Stephen Hawking was a few steps down, followed by Shrek. On the ground floor, Napoleon Bonaparte's face sat above majestic wooden table, while The Rev. Martin Luther King Jr. was positioned in the center of the room.

Similarly, for the medieval town setting, users viewed images that included Hillary Clinton's face on the left side of a building, with Mickey Mouse and Batman placed at varying heights on nearby structures.

Then, the scene went blank, and after a two-minute break, each memory palace reappeared with numbered boxes where the faces had been. The research participants were then asked to recall which face had been in each location where a number was now displayed.

The key, say the researchers, was for participants to identify each face by its physical location and its relation to surrounding structures and faces--and also the location of the image relative to the user's own body.

"By visually navigating the scene, users could determine that 'Hillary Clinton is in the top left window and it looks like she is about 20 yards from where I am sitting,'" says Krokos, who conducted the user-study in the Augmentarium, a visualization testbed lab on the UMD campus that launched in 2015 with funding from the National Science Foundation.

The results showed an 8.8 percent improvement overall in recall accuracy using the VR headsets, a statistically significant number according to the research team.

In post-study questionnaires, all 40 participants said that they were completely comfortable--and adept--in navigating a desktop computer to access information, yet all but two said they preferred the immersive VR environment as a potential learning platform. The questionnaire also found that only two people said they felt "uncomfortable" using VR.

Many of the participants said the immersive "presence" while using VR allowed them to focus better. This was reflected in the research results: 40 percent of the participants scored at least 10 percent higher in recall ability using VR over the desktop display.

There has been much prior psychological research on the amount of recall that humans typically possess, notes Plaisant, who is an expert in human-computer interaction. Recent research in cognitive psychology suggests that the mind is inherently embodied, and that the way humans create and recall mental constructs is influenced by the way they perceive and move, she adds.

"This leads to the possibility that a spatial virtual memory palace--experienced in an immersive virtual environment--could enhance learning and recall by leveraging a person's overall sense of body position, movement and acceleration," Plaisant says.

The UMD team believes this study will lay the groundwork for other scientific inquiry on the value of VR and AR for education.

"By showing that virtual reality can help improve recall, it opens the door to further studies that look at the impact of VR-based training modules at all levels--from elementary school children learning astronomy to trauma residents acquiring the latest knowledge in lifesaving procedures," Varshney says. "We believe the future of education and innovation will benefit greatly from the use of these new visual technologies."

###

This work was supported by the National Science Foundation (Grant Nos. 14-29404 and 15-64212), the state of Maryland's MPower initiative and the NVIDIA CUDA Center of Excellence program. The content of this article does not necessarily reflect the views of these organizations.

The research paper, "Virtual memory palaces: immersion aids recall," Eric Krokos, Catherine Plaisant and Amitabh Varshney, was published online in the journal Virtual Reality on May 16, 2018.

Media Relations Contact: Tom Ventsias, 301.405.5933, tomvent@umiacs.umd.edu

University of Maryland
College of Computer, Mathematical, and Natural Sciences
2300 Symons Hall
College Park, MD 20742
http://www.cmns.umd.edu
@UMDscience

About the College of Computer, Mathematical, and Natural Sciences:

The College of Computer, Mathematical, and Natural Sciences at the University of Maryland educates more than 9,000 future scientific leaders in its undergraduate and graduate programs each year. The college's 10 departments and more than a dozen interdisciplinary research centers foster scientific discovery with annual sponsored research funding exceeding $175 million.

Tom Ventsias | EurekAlert!
Further information:
http://dx.doi.org/10.1007/s10055-018-0346-3

Further reports about: UMD Virtual Reality computer science

More articles from Information Technology:

nachricht Fraunhofer Radio Technology becomes part of the worldwide Telecom Infra Project (TIP)
14.11.2019 | Fraunhofer-Institut für Angewandte Informationstechnik FIT

nachricht No more traffic blues for information transfer: decongesting wireless channels
11.11.2019 | Tokyo University of Science

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New opportunities in additive manufacturing presented

Fraunhofer IFAM Dresden demonstrates manufacturing of copper components

The Fraunhofer Institute for Manufacturing Technology and Advanced Materials IFAM in Dresden has succeeded in using Selective Electron Beam Melting (SEBM) to...

Im Focus: New Pitt research finds carbon nanotubes show a love/hate relationship with water

Carbon nanotubes (CNTs) are valuable for a wide variety of applications. Made of graphene sheets rolled into tubes 10,000 times smaller than a human hair, CNTs have an exceptional strength-to-mass ratio and excellent thermal and electrical properties. These features make them ideal for a range of applications, including supercapacitors, interconnects, adhesives, particle trapping and structural color.

New research reveals even more potential for CNTs: as a coating, they can both repel and hold water in place, a useful property for applications like printing,...

Im Focus: Magnets for the second dimension

If you've ever tried to put several really strong, small cube magnets right next to each other on a magnetic board, you'll know that you just can't do it. What happens is that the magnets always arrange themselves in a column sticking out vertically from the magnetic board. Moreover, it's almost impossible to join several rows of these magnets together to form a flat surface. That's because magnets are dipolar. Equal poles repel each other, with the north pole of one magnet always attaching itself to the south pole of another and vice versa. This explains why they form a column with all the magnets aligned the same way.

Now, scientists at ETH Zurich have managed to create magnetic building blocks in the shape of cubes that - for the first time ever - can be joined together to...

Im Focus: A new quantum data classification protocol brings us nearer to a future 'quantum internet'

The algorithm represents a first step in the automated learning of quantum information networks

Quantum-based communication and computation technologies promise unprecedented applications, such as unconditionally secure communications, ultra-precise...

Im Focus: Distorted Atoms

In two experiments performed at the free-electron laser FLASH in Hamburg a cooperation led by physicists from the Heidelberg Max Planck Institute for Nuclear physics (MPIK) demonstrated strongly-driven nonlinear interaction of ultrashort extreme-ultraviolet (XUV) laser pulses with atoms and ions. The powerful excitation of an electron pair in helium was found to compete with the ultrafast decay, which temporarily may even lead to population inversion. Resonant transitions in doubly charged neon ions were shifted in energy, and observed by XUV-XUV pump-probe transient absorption spectroscopy.

An international team led by physicists from the MPIK reports on new results for efficient two-electron excitations in helium driven by strong and ultrashort...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

High entropy alloys for hot turbines and tireless metal-forming presses

05.11.2019 | Event News

Smart lasers open up new applications and are the “tool of choice” in digitalization

30.10.2019 | Event News

International Symposium on Functional Materials for Electrolysis, Fuel Cells and Metal-Air Batteries

02.10.2019 | Event News

 
Latest News

New opportunities in additive manufacturing presented

14.11.2019 | Materials Sciences

Massive photons in an artificial magnetic field

14.11.2019 | Physics and Astronomy

Fraunhofer Radio Technology becomes part of the worldwide Telecom Infra Project (TIP)

14.11.2019 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>