Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Super magnets from a 3D printer

05.03.2020

Magnetic materials are an important component of mechatronic devices such as wind power stations, electric motors, sensors and magnetic switch systems. Magnets are usually produced using rare earths and conventional manufacturing methods. A team of researchers at Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) has worked together with researchers from the Graz University of Technology, the University of Vienna and the research institution Joanneum Research to produce specially designed magnets using a 3D printer. The results were published in the journal Materials.

Permanent magnets are incorporated into a number of mechatronic applications.


The research team has now succeeded in producing miniaturised supermagnets using laser-based 3D printing.

Image: IMAT – TU Graz

Traditional manufacturing methods such as sintering or injection moulding are not always able to cope with increasing miniaturisation and the resulting geometric requirements for magnets, and this is a trend which is sent to continue in the future.

Additive manufacturing processes offer the necessary freedom of design.

The research team, involving Prof. Dr. Jörg Franke from the Institute for Factory Automation and Production Systems at FAU, has now succeeded in creating super magnets using laser-based 3D printing.

Metallic powder of the magnetic material is added layer by layer and the particles are joined by melting.

The process allows magnets to be printed with a relatively high density at the same time as controlling their microstructure.

This allows researchers to tailor the magnetic properties to suit the required application exactly.

Wissenschaftliche Ansprechpartner:

Further information
Prof. Dr. Ing. Jörg Franke
Institute for Factory Automation and Production Systems
Phone: + 49 9131 85 27569
joerg.franke@faps.fau.de

Dr. Susanne Langer | idw - Informationsdienst Wissenschaft

More articles from Machine Engineering:

nachricht MOONRISE: Bringing 3D printing to the moon – Moondust melted under lunar conditions
01.07.2020 | Laser Zentrum Hannover e.V.

nachricht Strong and ductile Damascus steels by additive manufacturing
25.06.2020 | Max-Planck-Institut für Eisenforschung GmbH

All articles from Machine Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron cryo-microscopy: Using inexpensive technology to produce high-resolution images

Biochemists at Martin Luther University Halle-Wittenberg (MLU) have used a standard electron cryo-microscope to achieve surprisingly good images that are on par with those taken by far more sophisticated equipment. They have succeeded in determining the structure of ferritin almost at the atomic level. Their results were published in the journal "PLOS ONE".

Electron cryo-microscopy has become increasingly important in recent years, especially in shedding light on protein structures. The developers of the new...

Im Focus: The spin state story: Observation of the quantum spin liquid state in novel material

New insight into the spin behavior in an exotic state of matter puts us closer to next-generation spintronic devices

Aside from the deep understanding of the natural world that quantum physics theory offers, scientists worldwide are working tirelessly to bring forth a...

Im Focus: Excitation of robust materials

Kiel physics team observed extremely fast electronic changes in real time in a special material class

In physics, they are currently the subject of intensive research; in electronics, they could enable completely new functions. So-called topological materials...

Im Focus: Electrons in the fast lane

Solar cells based on perovskite compounds could soon make electricity generation from sunlight even more efficient and cheaper. The laboratory efficiency of these perovskite solar cells already exceeds that of the well-known silicon solar cells. An international team led by Stefan Weber from the Max Planck Institute for Polymer Research (MPI-P) in Mainz has found microscopic structures in perovskite crystals that can guide the charge transport in the solar cell. Clever alignment of these "electron highways" could make perovskite solar cells even more powerful.

Solar cells convert sunlight into electricity. During this process, the electrons of the material inside the cell absorb the energy of the light....

Im Focus: The lightest electromagnetic shielding material in the world

Empa researchers have succeeded in applying aerogels to microelectronics: Aerogels based on cellulose nanofibers can effectively shield electromagnetic radiation over a wide frequency range – and they are unrivalled in terms of weight.

Electric motors and electronic devices generate electromagnetic fields that sometimes have to be shielded in order not to affect neighboring electronic...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Contact Tracing Apps against COVID-19: German National Academy Leopoldina hosts international virtual panel discussion

07.07.2020 | Event News

International conference QuApps shows status quo of quantum technology

02.07.2020 | Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

 
Latest News

Black phosphorus-based van der Waals heterostructures for mid-infrared light-emission applications

13.07.2020 | Physics and Astronomy

Polarization of Br2 molecule in vanadium oxide cluster cavity and new alkane bromination

13.07.2020 | Life Sciences

Researchers present concept for a new technique to study superheavy elements

13.07.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>