Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Laser-based sensing system can detect methane leaks from miles away

26.03.2018

A new field instrument can quantify methane leaks as tiny as one-quarter of a human exhalation from nearly a mile away.

A new field instrument developed by a collaborative team of CU Boulder researchers can detect and quantify methane leaks as tiny as one-quarter of a human exhalation from nearly a mile away.


The laser-based instrument collects precise, nonstop data, providing game-changing information critical for safe industry operations and controlling harmful greenhouse gas emissions.

Credit: University of Colorado Boulder

The revamped and "ruggedized" laser technology--based on Nobel Prize-winning science developed at CU Boulder--turns a complex, room-sized collection of instruments into a sleek, 19-inch portable unit to tote into the field near oil and gas operations. The instrument collects precise, nonstop data, providing game-changing information critical for safe industry operations and controlling harmful greenhouse gas emissions.

The team is comprised of scientists from CU Boulder's College of Engineering and Applied Science, the Cooperative Institute for Research in Environmental Sciences (CIRES), the National Oceanic and Atmospheric Administration (NOAA) and the National Institute of Standards and Technology (NIST). The project, funded by an ARPA-E grant focusing on "high risk/high reward" science, published research results this week in the journal Optica along with a companion paper on the leak-finding routines in the journal Atmospheric Measurement Techniques.

Detecting methane and other gas leaks from oil and gas operations has traditionally been hampered by high costs and technological constraints, which have limited efforts to provide continuous monitoring. The new technology, which relies on a laser system called a dual frequency comb spectrometer, provides a much-needed solution: extremely efficient, accurate data collection at a fraction of the cost of previous technologies.

"This instrument is particularly special because it's precise, autonomous, and continuous," said Caroline Alden, a CIRES researcher and a co-lead author of the study. "Other technologies like aircraft flybys or physically traveling to sampling sites pose a problem--if a leak occurs between sampling events, you missed it."

Continuous monitoring could help industry operators catch not only frequent, small leaks, but large, infrequent ones, Alden said. Such "super emitters" are thought to comprise only 20 percent of leaks, but cause 80 percent of emissions.

The journey to this technology started in 2005 when JILA researchers won the Nobel Prize in Physics for work on a device called a Frequency Comb Laser. The laser emits hundreds of thousands of wavelengths of light, compared with the single wavelength of many traditional lasers. This laser enables the measurement of light with extreme accuracy, enabling precision atomic clocks and future mapping technologies, for example.

Other researchers realized that a frequency comb could also be used to measure concentrations of specific molecules in the air, as each would have their own light absorption "fingerprint." NIST researchers Nate Newbury and Ian Coddington made this possible by creating a frequency comb spectrometer capable of untangling the thousands of different wavelengths from the device.

When it came to applying this technology to real-world methane leak detection, a team including principal investigator Greg Rieker, atmospheric scientist Alden, chemist Sean Coburn, and engineer Rob Wright stepped in. The team scaled down what was originally a room brimming with instrumentation to a 19-inch box that could be carried into the field. Alden and others on the atmospheric team figured out how to use wind patterns to investigate possible leak points, enabling their frequency-comb based observing system to pinpoint the source of a methane leak.

"It was a great collaborative effort, it all came together perfectly," said Rieker. "We ended up creating an instrument that was mobile, portable, and robust--it works better than the original, at a tenth of the cost."

The instrument sits on a mobile platform that can be placed out in field sites surrounded by oil and gas operations. It swivels 360 degrees, sending out carefully-tuned, invisible beams of light to reflect off small mirrors placed a mile or more away. If the beam, composed of over 100,000 wavelengths, passes through part of a gas plume blowing like a ribbon through the air, gases in the plume absorb some of the light in the beam before it returns to the detector. This lets researchers identify the unique absorption "fingerprints" of gases like methane and carbon dioxide. And with atmospheric models, researchers can track back to an actual leak location.

Researchers first tested the dual frequency comb spectrometer observing system at Boulder's Table Mountain research facility, successfully detecting leaks emitted from large metal cylinders full of methane they dragged around the rolling hills of the field site. The team is now putting the instrument through a rigorous blind test: collaborators at the METEC test site, run by the Energy Institute at Colorado State University, set up a treasure hunt of leaks in varying locations and sizes, even planting false leaks to trick the system.

"We know nothing about the leaks or where they are--so there will be no 'cheating the system'," said Rieker. "We're still preparing those results for public release, but I can say that we surprised even ourselves with our ability to find the leaks."

This first-of-its-kind technology presents something very unique in the oil and gas industry: the ability to monitor hundreds of sites from a single location. The more locations you can measure with a single instrument, the more cost effective it becomes, said Alden.

"As part of an effort to provide a service that can give oil and gas operators more efficient and cheaper leak detection, we are launching a start-up called Longpath Technologies," said Alden. "We will continue to grow this alongside the emerging technology it relies on."

Media Contact

Trent.Knoss@colorado.edu
trent.knoss@colorado.edu
303-735-0528

 @cubouldernews

http://www.colorado.edu/news 

Trent.Knoss@colorado.edu | EurekAlert!

Further reports about: Atmospheric CIRES EMISSIONS NIST wavelengths wavelengths of light

More articles from Earth Sciences:

nachricht Geochemists measure new composition of Earth’s mantle
17.09.2019 | Westfälische Wilhelms-Universität Münster

nachricht Low sea-ice cover in the Arctic
13.09.2019 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Happy hour for time-resolved crystallography

Researchers from the Department of Atomically Resolved Dynamics of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg, the University of Hamburg and the European Molecular Biology Laboratory (EMBL) outstation in the city have developed a new method to watch biomolecules at work. This method dramatically simplifies starting enzymatic reactions by mixing a cocktail of small amounts of liquids with protein crystals. Determination of the protein structures at different times after mixing can be assembled into a time-lapse sequence that shows the molecular foundations of biology.

The functions of biomolecules are determined by their motions and structural changes. Yet it is a formidable challenge to understand these dynamic motions.

Im Focus: Modular OLED light strips

At the International Symposium on Automotive Lighting 2019 (ISAL) in Darmstadt from September 23 to 25, 2019, the Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, a provider of research and development services in the field of organic electronics, will present OLED light strips of any length with additional functionalities for the first time at booth no. 37.

Almost everyone is familiar with light strips for interior design. LED strips are available by the metre in DIY stores around the corner and are just as often...

Im Focus: Tomorrow´s coolants of choice

Scientists assess the potential of magnetic-cooling materials

Later during this century, around 2060, a paradigm shift in global energy consumption is expected: we will spend more energy for cooling than for heating....

Im Focus: The working of a molecular string phone

Researchers from the Department of Atomically Resolved Dynamics of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg, the University of Potsdam (both in Germany) and the University of Toronto (Canada) have pieced together a detailed time-lapse movie revealing all the major steps during the catalytic cycle of an enzyme. Surprisingly, the communication between the protein units is accomplished via a water-network akin to a string telephone. This communication is aligned with a ‘breathing’ motion, that is the expansion and contraction of the protein.

This time-lapse sequence of structures reveals dynamic motions as a fundamental element in the molecular foundations of biology.

Im Focus: Milestones on the Way to the Nuclear Clock

Two research teams have succeeded simultaneously in measuring the long-sought Thorium nuclear transition, which enables extremely precise nuclear clocks. TU Wien (Vienna) is part of both teams.

If you want to build the most accurate clock in the world, you need something that "ticks" very fast and extremely precise. In an atomic clock, electrons are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Society 5.0: putting humans at the heart of digitalisation

10.09.2019 | Event News

Interspeech 2019 conference: Alexa and Siri in Graz

04.09.2019 | Event News

AI for Laser Technology Conference: optimizing the use of lasers with artificial intelligence

29.08.2019 | Event News

 
Latest News

Stroke patients relearning how to walk with peculiar shoe

18.09.2019 | Innovative Products

Statistical inference to mimic the operating manner of highly-experienced crystallographer

18.09.2019 | Physics and Astronomy

Scientists' design discovery doubles conductivity of indium oxide transparent coatings

18.09.2019 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>