Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Red light for stress

04.05.2020

Researchers at the Institute of Industrial Science, part of The University of Tokyo, and Yokohama City University have introduced novel color-changing organic crystals that spontaneously return to their original shape and hue after being stressed, a property they call superelastochromism. These materials can be used to make sensors for shear forces to monitor locations susceptible to damage.

The ability to visualize forces can be very useful in many industries, particularly heavy manufacturing and shipping. For example, a color-changing material that shows where beams are being stressed would be great for construction companies.


Researchers at The University of Tokyo and Yokohama City University create elastic fluorescent crystals that reversibly change color when bent or deformed. This work may lead to the development of durable mechanical sensors that require little or no external power.

Credit: Institute of Industrial Science, The University of Tokyo

However, such devices often work once and have to be replaced after being stretched. Materials that bounce back after being stretched or squeezed, like a rubber ball, are called elastic. But even these objects can suffer a permanent change of shape when stressed too much, in a process called plastic deformation.

Now, a team has introduced a new organic material that changes the color of its emitted fluorescence from green to red under mechanical stress, and bounces right back to its original configuration when this stress is removed.

"We called this property 'superelastochromism' because the color changes are due to completely reversible--that is, elastic--changes to the arrangements of molecules in the material," says first author Toshiki Mutai.

Based on 7-chloro-2-(2?-hydroxyphenyl)imidazo[1,2-a]pyridine (7Cl), the crystals consist of molecules that can exist in two distinct configurations. In both states, a hydrogen atom is covalently bonded to an oxygen atom, and only weakly attracted to a nearby nitrogen atom.

When the material is squeezed or bent, the molecular arrangement switches to the other configuration. This mechanically controlled phase transition alters the wavelengths of light the molecule will emit as fluorescence when excited by an external UV light source. The change is clearly apparent to the unaided eye as a shift in color from neon green to reddish orange.

"Chromatic changes in sensors are highly desirable, because they are easily seen and interpreted by people," says senior author Satoshi Takamizawa. "If more precise measurements are needed, spectroscopy can be used to quantify the amount of stress."

This work can help led to a wide range of "smart" material sensors. For example, one could be used to determine the time when mechanical stress is applied or removed.

###

The work is published in Nature Communications as "A superelastochromic crystal" (DOI:10.1038/s41467-020-15663-5)

About Institute of Industrial Science (IIS), the University of Tokyo

Institute of Industrial Science (IIS), the University of Tokyo is one of the largest university-attached research institutes in Japan.

More than 120 research laboratories, each headed by a faculty member, comprise IIS, with more than 1,000 members including approximately 300 staff and 700 students actively engaged in education and research. Our activities cover almost all the areas of engineering disciplines. Since its foundation in 1949, IIS has worked to bridge the huge gaps that exist between academic disciplines and real-world applications.

Toshiki Mutai | EurekAlert!
Further information:
https://www.iis.u-tokyo.ac.jp/en/news/3285/
http://dx.doi.org/10.1038/s41467-020-15663-5

More articles from Materials Sciences:

nachricht Atomic 'Swiss army knife' precisely measures materials for quantum computers
07.07.2020 | National Institute of Standards and Technology (NIST)

nachricht Carbon-loving materials designed to reduce industrial emissions
06.07.2020 | DOE/Oak Ridge National Laboratory

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Excitation of robust materials

Kiel physics team observed extremely fast electronic changes in real time in a special material class

In physics, they are currently the subject of intensive research; in electronics, they could enable completely new functions. So-called topological materials...

Im Focus: Electrons in the fast lane

Solar cells based on perovskite compounds could soon make electricity generation from sunlight even more efficient and cheaper. The laboratory efficiency of these perovskite solar cells already exceeds that of the well-known silicon solar cells. An international team led by Stefan Weber from the Max Planck Institute for Polymer Research (MPI-P) in Mainz has found microscopic structures in perovskite crystals that can guide the charge transport in the solar cell. Clever alignment of these "electron highways" could make perovskite solar cells even more powerful.

Solar cells convert sunlight into electricity. During this process, the electrons of the material inside the cell absorb the energy of the light....

Im Focus: The lightest electromagnetic shielding material in the world

Empa researchers have succeeded in applying aerogels to microelectronics: Aerogels based on cellulose nanofibers can effectively shield electromagnetic radiation over a wide frequency range – and they are unrivalled in terms of weight.

Electric motors and electronic devices generate electromagnetic fields that sometimes have to be shielded in order not to affect neighboring electronic...

Im Focus: Gentle wall contact – the right scenario for a fusion power plant

Quasi-continuous power exhaust developed as a wall-friendly method on ASDEX Upgrade

A promising operating mode for the plasma of a future power plant has been developed at the ASDEX Upgrade fusion device at Max Planck Institute for Plasma...

Im Focus: ILA Goes Digital – Automation & Production Technology for Adaptable Aircraft Production

Live event – July 1, 2020 - 11:00 to 11:45 (CET)
"Automation in Aerospace Industry @ Fraunhofer IFAM"

The Fraunhofer Institute for Manufacturing Technology and Advanced Materials IFAM l Stade is presenting its forward-looking R&D portfolio for the first time at...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Contact Tracing Apps against COVID-19: German National Academy Leopoldina hosts international virtual panel discussion

07.07.2020 | Event News

International conference QuApps shows status quo of quantum technology

02.07.2020 | Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

 
Latest News

Quick notes in the genome

07.07.2020 | Life Sciences

Limitations of Super-Resolution Microscopy Overcome

07.07.2020 | Life Sciences

Put into the right light - Reproducible and sustainable coupling reactions

07.07.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>