Helgoland is Germany's only true offshore island, known more for seabirds, seals and duty-free shopping than for viruses. However, these were precisely the focus of the MPI researchers.
Bild: Naomi Esken / Max Planck Institute for Marine Microbiology
Viruses in the ocean are numerous, diverse and play an important role in the marine carbon cycle.
A new study in ISME Journal provides exciting insights into the life of marine viruses in the North Sea during the spring bloom. Off the offshore island of Helgoland, researchers led by Nina Bartlau from the Max Planck Institute for Marine Microbiology found a dynamic viral community that can strongly influence the mortality of North Sea bacteria and thereby the carbon cycle of this habitat. They also discovered and isolated numerous new virus species.
On average, hundreds of thousands of tiny algae and a billion bacteria live in every liter of North Sea water. As if that were not enough, there are also 10 billion viruses in every liter. They primarily infect bacteria and have a large and diverse impact on their environment, for example by killing infected cells and causing them to decay, or by altering their gene expression or genetic material. Now, a study published in ISME Journal provides new insights into the life of these viruses.
“Despite their importance, viruses are rarely a focus of marine research,” says first author Nina Bartlau from the Max Planck Institute for Marine Microbiology. “To my knowledge, we hereby provide the first study dealing with viruses of Flavobacteria, which are the most common bacteria in spring blooms, in the North Sea.”
Many new viruses discovered
Outnumbered: The tiny viruses crowd closely around their much larger hosts, the bacteria. About 10 to 45 percent of bacteria in seawater are infected with viruses. (c) Georg Krohne
The researchers found many new and very diverse phages in the North Sea. Phages are viruses that infect bacteria. Accordingly, the viruses studied here, which are specialized to infect Flavobacteria, are called flavophages. “The abundance and types of phages changed during the spring bloom. For example, at the beginning of the bloom we found only a few phages, which increased in abundance over time. We were also able to show that a particular phage species was only present for a short period of time, after which only its relatives remained,” explains co-author Cristina Moraru from the Institute of Chemistry and Biology of the Marine Environment (ICBM) at the University of Oldenburg. Over the years, however, the community of viruses was quite stable: Different phages could be found and isolated in two consecutive years.
Bartlau and her colleagues have thus collected numerous pieces of evidence that indicate: Viruses have a major impact on bacterial mortality during the spring bloom. The bacteria are responsible for breaking down the remains of microscopic algae over the course of the bloom, which largely releases the carbon dioxide absorbed by the algae from the atmosphere. “There is a possible link here between the viruses and the global carbon cycle, which will certainly be very exciting to investigate,” says Bartlau.
Now also in the laboratory
The researchers also succeeded in cultivating numerous different and previously unknown viruses in the laboratory in Bremen. “We identified 10 new genera and also 10 new families,” says Bartlau. Many of them – 9 of the 10 genera and 4 of the 10 families to be exact – did not exist in culture before. “These new isolates now allow for exciting experiments in the lab to further our knowledge of flavophages and the role of viruses in the ocean,” Bartlau emphasizes. And this knowledge then goes far beyond the marine habitat, because some of the virus families isolated here also have members that live in freshwater, sewage and soil.
Participating institutions:
Max Planck Institute for Marine Microbiology, Bremen
Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg
Imaging Core Facility, Biozentrum, University of Würzburg
Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Bremerhaven
Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
Wissenschaftliche Ansprechpartner:
Dr. Rudolf Amann
Department of Molecular Ecology
Max Planck Institute for Marine Microbiology, Bremen
Phone: +49 421 2028-9300
Email: ramann@mpi-bremen.de
Dr. Fanni Aspetsberger
Press Officer
Max Planck Institute for Marine Microbiology, Bremen
Phone: +49 421 2028-9470
Email: faspetsb@mpi-bremen.de
Originalpublikation:
Nina Bartlau, Antje Wichels, Georg Krohne, Evelien M. Adriaenssens, Anneke Heins, Bernhard M. Fuchs, Rudolf Amann, Cristina Moraru (2021): Highly diverse flavobacterial phages isolated from North Sea spring blooms. ISME Journal.
DOI: 10.1038/s41396-021-01097-4
Bioinformatics: Publication in Science Bioinformaticians from Heinrich Heine University Düsseldorf (HHU) and the university in Linköping (Sweden) have established that the genes in bacterial genomes are arranged in a meaningful order. In the renowned scientific journal Science, they describe that the genes are arranged by function: If they become increasingly important at faster growth, they are located near the origin of DNA replication. Accordingly, their position influences how their activity changes with the growth rate. Are genes distributed randomly along…
Mechanical compression induces multicellular organization in archaeaIn a discovery that reframes our understanding of life’s fundamental organization, researchers at Brandeis University, the MRC Laboratory of Molecular Biology, and the Max Planck Institute for Biology Tübingen have found that mechanical compression can induce the formation of tissue-like multicellular structures in archaea. This novel finding, focusing on the haloarchaeon Haloferax volcanii, reveals a previously unknown pathway for the emergence of multicellularity within this domain of life, offering new insights into the evolutionary…
Capturing carbon dioxide (CO₂) from industrial emissions is crucial in the fight against climate change. But current methods, like chemical absorption, are expensive and energy-intensive. Scientists have long eyed graphene—an atom-thin, ultra-strong material—as a promising alternative for gas separation, but making large-area, efficient graphene membranes has been a challenge. Now, a team at EPFL, led by Professor Kumar Agrawal, has developed a scalable technique to create porous graphene membranes that selectively filter CO₂ from gas mixtures. Their approach slashes production…
Researchers developed a cell-based reporter assay that can quantify epigenetic changes induced by chemicals and potential carcinogens Chemicals used as food preservatives, flavoring agents, dyes, pesticides, cosmetics, cleaners, and other industrial materials are being increasingly recognized as a health hazard. Their rampant use has led to an increase in the prevalence of various chemical toxicity-induced diseases, including hormonal disruption, cancer, neurological disorders, skin conditions, and occupational poisoning. Numerous chemicals are known to trigger “carcinogenesis” or cancer development by exerting genotoxic…