Life & Chemistry

Single-Electron Bond Found in Carbon-Based Compound

Using an X-ray diffractor to study the sigma bond. (Photo: Yusuke Ishigaki)

The discovery of a stable single-electron covalent bond between two carbon atoms validates a century-old theory.

Covalent bonds, in which two atoms are bound together by sharing a pair of electrons, form the scaffolding that underpins the majority of organic compounds. In 1931, the Nobel Laureate Linus Pauling suggested that covalent bonds made from just a single, unpaired electron could exist, but these single-electron bonds would likely be much weaker than a standard covalent bond involving a pair of electrons.

Since then, single-electron bonds have been observed, but never in carbon or hydrogen — the hunt for one-electron bonds shared between carbon atoms has stymied scientists.

Now, a team of researchers from Hokkaido University has isolated a compound in which a single electron is shared between two carbon atoms in a remarkably stable covalent bond, known as a sigma bond. Their findings are published in the journal Nature.

“Elucidating the nature of single-electron sigma-bonds between two carbon atoms is essential to gain a deeper understanding of chemical-bonding theories and would provide further insights into chemical reactions,” explains Professor Yusuke Ishigaki, of the Department of Chemistry at Hokkaido University, who co-authored the study.

The single-electron bond was formed by subjecting a derivative of hexaphenylethane, which contains an extremely stretched out paired-electron covalent bond between two carbon atoms, to an oxidation reaction in the presence of iodine. The reaction produced dark violet-colored crystals of an iodine salt.

The team used X-ray diffraction analysis to study the crystals and found that the carbon atoms in them were extremely close together, suggesting the presence of single-electron covalent bonds between carbon atoms. They were then able to confirm this using a form of chemical analysis called Raman spectroscopy.

“These results thus constitute the first piece of experimental evidence for a carbon-carbon single-electron covalent bond, which can be expected to pave the way for further developments of the chemistry of this scarcely-explored type of bonding,” Takuya Shimajiri, the lead author of the paper and now at the University of Tokyo, says.

Journal: Nature
DOI: 10.1038/s41586-024-07965-1
Method of Research: Experimental study
Subject of Research: Not applicable
Article Title: Direct evidence for a carbon–carbon one-electron σ-bond
Article Publication Date: 25-Sep-2024

Media Contacts

Sohail Keegan Pinto
Hokkaido University
en-press@general.hokudai.ac.jp
Office: +81-11-706-2186

Emese Berta
The University of Tokyo
media.s@gs.mail.u-tokyo.ac.jp
 @UTokyo_Science

Expert Contacts

Assistant Professor Takuya Shimajiri
The University of Tokyo
shimajiri@chem.s.u-tokyo.ac.jp
Office: +81-3-5841-8061

Associate Professor Yusuke Ishigaki
Hokkaido University
yishigaki@sci.hokudai.ac.jp
Office: +81-11-706-2701

Comments (0)

Write a comment