An international team with researchers from the University of Bayreuth has succeeded for the first time in discovering a previously unknown two-dimensional material by using modern high-pressure technology. The new material, beryllonitrene, consists of regularly arranged nitrogen and beryllium atoms. It has an unusual electronic lattice structure that shows great potential for applications in quantum technology. Its synthesis required a compression pressure that is about one million times higher than the pressure of the Earth’s atmosphere. The scientists have presented…
New interfacial superconductor has novel properties that raise new fundamental questions and might be useful for quantum information processing or quantum sensing. Interfaces in solids form the basis for much of modern technology. For example, transistors found in all our electronic devices work by controlling the electrons at interfaces of semiconductors. More broadly, the interface between any two materials can have unique properties that are dramatically different from those found within either material separately, setting the stage for new discoveries….
Synthesis of Large-Area 2D Material … Elbow mentality in a two-dimensional material: This has recently been discovered by an international team led by the Center for Nanointegration (CENIDE) at the University of Duisburg-Essen (UDE): The physicists succeeded in creating boron layers with a height of a single atom. While growing, the material simply pushes interfering steps on the substrate out of the way. The team published its results in the scientific journal ACS Nano. The team led by UDE’s Prof….
In extreme heat or in the vacuum of space: a novel nanomaterial delivers top performance in extreme situations, as demonstrated by TU Wien (Vienna) with international partners. You can lubricate a bicycle chain with oil, but what do you do with a Mars rover or a red-hot conveyor belt in the steel industry? Very special nanomaterials have now been studied by the TU Wien together with research groups from Saarbrücken (Germany), Purdue University in the USA and the Universidad de…
New optics-on-a-chip device paves way to capturing fast chemical, material and biological processes. Researchers have developed new x-ray optics that can be used to harness extremely fast pulses in a package that is significantly smaller and lighter than conventional devices used to modulate x-rays. The new optics are based on microscopic chip-based devices known as microelectromechanical systems (MEMS). “Our new ultrafast optics-on-a-chip is poised to enable x-ray research and applications that could have a broad impact on understanding fast-evolving chemical,…
Max Planck scientists publish latest results in the journal Science Advances … Metals are one of the most important materials in our civilization due to their excellent strength and formability. The possibility to permanently deform and shape metals without breaking, makes them the material of choice for many high-tech products. Their plastic deformation is typically carried by motion of defects called dislocations, in the lattice structure. As the dislocations move, they deform the material permanently, allowing the metal to assume…
Liquid Crystals (LC) are widely deployed in display technology and optical fibres. From smartphones in your pockets to large screen TVs, LCs are everywhere, as this special state of matter has been found in colorful soap bubbles as well as certain living tissues. But LCs are by no means limited to use in gadgets or electronic devices. For quite some time, scientists have been studying the possibility of creating “active nematics”, a particular class of active LCs, which consist of…
Austrian pyhsicists are able to devise a design principle for the self-assembly of functionalized molecules. The production of nanomaterials involves self-assembly processes of functionalized (organic) molecules on inorganic surfaces. This combination of organic and inorganic components is essential for applications in organic electronics and other areas of nanotechnology. Until now, certain desired surface properties were often achieved on a trial-and-error basis. Molecules were chemically modified until the best result for the desired surface property was found. However, the processes controlling…
With “DiWan” Fraunhofer IWS takes materials testing to a new level. Scientists of the Fraunhofer Institute for Material and Beam Technology IWS at Dresden in cooperation with partners from research and industry are planning to create a virtual materials expert system. This system will offer interfaces to publicly available know-how such as the latest scientific papers on materials and relevant standards as well as the practical knowledge of experts. The artificial assistant will provide this accumulated expertise to its human…
Study shows how to make stable and large aerogels that remove heavy metals, organic solvents, organic dyes. Graphene excels at removing contaminants from water, but it’s not yet a commercially viable use of the wonder material. That could be changing. In a recent study, University at Buffalo engineers report a new process of 3D printing graphene aerogels that they say overcomes two key hurdles — scalability and creating a version of the material that’s stable enough for repeated use —…
Nanothin antimicrobial coating could prevent and treat potentially deadly infections. Researchers have developed a new superbug-destroying coating that could be used on wound dressings and implants to prevent and treat potentially deadly bacterial and fungal infections. The material is one of the thinnest antimicrobial coatings developed to date and is effective against a broad range of drug-resistant bacteria and fungal cells, while leaving human cells unharmed. Antibiotic resistance is a major global health threat, causing at least 700,000 deaths a…
It’s an example of how surprising properties can spontaneously emerge in complex materials — a phenomenon scientists hope to harness for novel technologies. Creating a two-dimensional material, just a few atoms thick, is often an arduous process requiring sophisticated equipment. So scientists were surprised to see 2D puddles emerge inside a three-dimensional superconductor – a material that allows electrons to travel with 100% efficiency and zero resistance – with no prompting. Within those puddles, superconducting electrons acted as if they…
A clean energy future propelled by hydrogen fuel depends on figuring out how to reliably and efficiently split water. That’s because, even though hydrogen is abundant, it must be derived from another substance that contains it — and today, that substance is often methane gas. Scientists are seeking ways to isolate this energy-carrying element without using fossil fuels. That would pave the way for hydrogen-fueled cars, for example, that emit only water and warm air at the tailpipe. Water, or…
Heidelberg scientists achieve defect control with a new reaction pathway. The properties of carbon-based nanomaterials can be altered and engineered through the deliberate introduction of certain structural “imperfections” or defects. The challenge, however, is to control the number and type of these defects. In the case of carbon nanotubes – microscopically small tubular compounds that emit light in the near-infrared – chemists and materials scientists at Heidelberg University led by Prof. Dr Jana Zaumseil have now demonstrated a new reaction…
It may be possible in the future to use information technology where electron spin is used to store, process and transfer information in quantum computers. It has long been the goal of scientists to be able to use spin-based quantum information technology at room temperature. A team of researchers from Sweden, Finland and Japan have now constructed a semiconductor component in which information can be efficiently exchanged between electron spin and light at room temperature and above. The new method…
Pioneering study co-led by Berkeley Lab has significance for next-gen information technologies. A decade ago, the discovery of quasiparticles called magnetic skyrmions provided important new clues into how microscopic spin textures will enable spintronics, a new class of electronics that use the orientation of an electron’s spin rather than its charge to encode data. But although scientists have made big advances in this very young field, they still don’t fully understand how to design spintronics materials that would allow for…