New paradigm in atmospheric gas sensing and molecular identification. Graphene, an atomic-thick sheet of carbon has found immense applications in gas sensors due to its single-molecule sensitivity, low-noise levels, and high carrier density. However, graphene’s much-heralded sensitivity also means it is inherently non-selective to any gas. Hence, it easily gets huge p-doping (reduction of graphene electron density) when exposed to atmospheric air which limits demonstrations of its selectivity to only inert environments such as dry air, or nitrogen. Nevertheless, for…
Fix in a manufacturing step of perovskite solar cells paves the way for commercialization of the high-performance, sunlight-to-electricity discovery. Materials scientists at the UCLA Samueli School of Engineering and colleagues from five other universities around the world have discovered the major reason why perovskite solar cells — which show great promise for improved energy-conversion efficiency — degrade in sunlight, causing their performance to suffer over time. The team successfully demonstrated a simple manufacturing adjustment to fix the cause of the…
Increasing lifetime and safety, decreasing maintenance and power generation costs and CO2 emission: That is the goal of a research project involving U Bremen Research Alliance member institutions. Researchers from the Leibniz Institute for Materials Engineering – IWT and the Fraunhofer Institute for Wind Energy Systems IWES are focusing on a component of wind turbines that has to withstand a great deal: the rotor blade bearing. She has a natural preference for steel, says Brigitte Clausen. What fascinates her so…
Physicists have discovered a new way to coat soft robots in materials that allow them to move and function in a more purposeful way. Physicists have discovered a new way to coat soft robots in materials that allow them to move and function in a more purposeful way. The research, led by the UK’s University of Bath, is described today in Science Advances. Authors of the study believe their breakthrough modelling on ‘active matter’ could mark a turning point in…
Development of a stretchable display where images can be transversely/ longitudinally stretched up to 25% without distortion. Results of this study have been published in Advanced Functional Materials. The Korea Institute of Machinery and Materials (President Sang Jin Park, hereafter referred to as KIMM), an institute under the jurisdiction of the Ministry of Science and ICT, has successfully developed a new stretchable meta-display technology that can be stretched up to 25% without image distortion, for the first time in the…
Study identifies extensive set of novel 2D materials. Two-dimensional (2D) materials possess extraordinary properties. They usually consist of atomic layers that are only a few nanometers thick and are particularly good at conducting heat and electricity, for instance. To the astonishment of many scientists, it recently became known that 2D materials can also exist on the basis of certain metal oxides. These oxides are of great interest in areas such as nanoelectronics applications. A German-American research team, led by the…
A newly proposed technique enables rapid 3D image acquisition. One-scan is a technique involving an elongated light spot that resembles a “needle” which captures three-dimensional (3D) images of a specimen. The new method, which was developed by researchers from Tohoku University and Osaka University, can rapidly take 3D images without moving the observation plane – something necessary in conventional laser scanning microscopes. Light microscopy is ubiquitous and vital for various fields including life science and medical diagnosis. As many biological…
Scientists have long tried to use graphene, which is composed of carbon, as a kind of sieve. But this material doesn’t have any pores. Now, a team has found an alternative material which comes with pores from the outset. Researchers from Bielefeld, Bochum and Yale have succeeded in producing a layer of two-dimensional (2D) silicon dioxide. This material contains natural pores and can therefore be used like a sieve for molecules and ions. Scientists have been looking for such materials…
Pitt engineers create insect-inspired robots that can monitor hard-to-reach spots. These ancient creatures can squeeze through the tiniest cracks, fit snugly into tight spaces and survive in harsh environments: There aren’t many spaces that are off-limits to an insect. That’s why researchers at the University of Pittsburgh have created tiny bug-inspired robots that can carry out tasks in hard-to-reach spaces and inhospitable environments. “These robots could be used to access confined areas for imaging or environmental evaluation, take water samples,…
Many semiconducting materials are possible candidates for solar cells. In recent years, perovskite semiconductors in particular have attracted attention, as they are both inexpensive and easy to process and enable high efficiencies. Now a study with 15 participating research institutions shows how terahertz (TRTS) and microwave spectroscopy (TRMC) can be used to reliably determine the mobility and lifetime of the charge carriers in new semiconducting materials. Using these measurement data it is possible to predict the potential efficiency of the…
Original technique predicts and guides the ordered creation of strong, yet flexible, diamond nanothread. As hard as diamond and as flexible as plastic, highly sought-after diamond nanothreads would be poised to revolutionize our world—if they weren’t so difficult to make. Recently, a team of scientists led by Carnegie’s Samuel Dunning and Timothy Strobel developed an original technique that predicts and guides the ordered creation of strong, yet flexible, diamond nanothreads, surmounting several existing challenges. The innovation will make it easier…
The highly adaptable materials could lead to new classes of wearable devices, diagnostic sensors and biological-electronic hybrid organisms. UCLA researchers have developed a unique design of ultrathin films for highly flexible yet mechanically robust bioelectronic membranes that could pave the way for diagnostic on-skin sensors that fit precisely over the body’s contours and conform to its movements. Science recently published a paper describing the research co-led by Xiangfeng Duan, professor of chemistry and biochemistry; and Yu Huang, professor and chair…
Discovery reveals role of oxygen impurities in semiconductor properties. A research team probing the properties of a semiconductor combined with a novel thin oxide film have observed a surprising new source of conductivity from oxygen atoms trapped inside. Scott Chambers, a materials scientist at the Department of Energy’s Pacific Northwest National Laboratory, reported the team’s discovery at the Spring 2022 meeting of the American Physical Society. The research finding is described in detail in the journal Physical Review Materials. The…
The introduction of lead-free metal halide powder into a scintillation screen took some tinkering. Once a KAUST team worked out the right technique, they were able to produce an exceptionally efficient, robust and flexible scintillation film to bring significant improvements in medical, industrial and security X-ray imaging. Scintillation materials release visible light, or “scintillate,” in response to absorbing invisible X-ray high-energy photons. They are used to construct digital images that reveal the relative passage and obstruction of X-rays as they…
Improvements in the material that converts X-rays into light, for medical or industrial images, could allow a tenfold signal enhancement. Scintillators are materials that emit light when bombarded with high-energy particles or X-rays. In medical or dental X-ray systems, they convert incoming X-ray radiation into visible light that can then be captured using film or photosensors. They’re also used for night-vision systems and for research, such as in particle detectors or electron microscopes. Researchers at MIT have now shown how…
Within the joint project LAOLA, which was funded by the German Federal Ministry of Education and Research (BMBF) and has now been completed, large-area lighting applications with OLEDs on flexible substrates should be developed. The project focused on ultra-thin glass, which offers advantages compared to plastic as a substrate due to its excellent barrier properties. At the Fraunhofer FEP, the OLEDs were applied to the flexible glass using a roll-to-roll process. A surgical light designed using this process will be…