High carrier mobility in cubic boron arsenide offers promise for next-gen electronics. Researchers have for the first time experimentally discovered that a cubic boron arsenide crystal offers high carrier mobility for both electrons and holes – the two ways in which a charge is carried in a semiconducting material – suggesting a major advance for next-generation electronics. While earlier predictions had theorized that the crystal could exhibit simultaneously high electron and hole mobility, one of two papers published July 22…
Berkeley Lab technology provides low-carbon manufacturing solution for plastic products. Scientists have designed a new material system to overcome one of the biggest challenges in recycling consumer products: mixed-plastic recycling. Their achievement will help enable a much broader range of fully recyclable plastic products and brings into reach to an efficient circular economy for durable goods like automobiles. We generate staggering quantities of plastic and plastic-containing products each year, but only a tiny fraction of that plastic can be recovered…
… creates golden opportunities for nanoimaging and communications. Low-dimensional materials form an emerging platform for exotic light-matter interactions, ideally suited for various photonic technologies. Light can strongly engage matter in these materials to create quasiparticles. These quasiparticles are known as polaritons, supporting deep-subwavelength optical fields with broadband responses. Van der Waals (vdW) crystals can feature these polaritons in the mid-infrared frequency range. Anisotropic vdW crystals are fascinating for nanophotonics because the material has different atomic interactions at the bonding level….
When carbon atoms stack into a perfectly repeating three-dimensional crystal, they can form precious diamonds. Arranged another way, in repetitive flat sheets, carbon makes the shiny gray graphite found in pencils. But there are other forms of carbon that are less well understood. Amorphous carbon—usually a sooty black material—has no repetitive molecular structure, making it challenging to study. Now, researchers at the University of Chicago’s Pritzker School of Molecular Engineering (PME) have utilized a new framework for understanding the electronic…
Waste heat is a very promising source of energy conservation and reuse, by means of converting this heat into electricity—a process called thermoelectric conversion. Commercially available thermoelectric conversion devices are synthesized using rare metals. While these are quite efficient, they are expensive and, in the majority of cases, utilize toxic materials. Both these factors have led to these converters being of limited use. One of the alternatives are oxide-based thermoelectric materials, but the primary drawback these suffer from is a…
Discovery also paves way for robots and wearable devices that mimic natural motion. UCLA materials scientists and colleagues at the nonprofit scientific research institute SRI International have developed a new material and manufacturing process for creating artificial muscles that are stronger and more flexible than their biological counterparts. “Creating an artificial muscle to enable work and detect force and touch has been one of the grand challenges of science and engineering,” said Qibing Pei, a professor of materials science and…
Researchers develop a comfortable, form-fitting fabric that recognizes its wearer’s activities, like walking, running, and jumping. Using a novel fabrication process, MIT researchers have produced smart textiles that snugly conform to the body so they can sense the wearer’s posture and motions. By incorporating a special type of plastic yarn and using heat to slightly melt it — a process called thermoforming — the researchers were able to greatly improve the precision of pressure sensors woven into multilayered knit textiles,…
A new material holds promise for the next generation of organic electronics. For decades, field-effect transistors enabled by silicon-based semiconductors have powered the electronics revolution. But in recent years, manufacturers have come up against hard physical limits to further size reductions and efficiency gains of silicon chips. That has scientists and engineers looking for alternatives to conventional metal-oxide semiconductor (CMOS) transistors. “Organic semiconductors offer several distinct advantages over conventional silicon-based semiconducting devices: they are made from abundantly available elements, such…
Rice lab creates first heat-tolerant, stable fibers from wet-spinning process. Boron nitride nanotubes used to be hard to process, according to Rice University researchers. Not anymore. A Rice team led by professors Matteo Pasquali and Angel Martí has simplified handling of the highly valuable nanotubes to make them more suitable for large-scale applications, including aerospace, electronics and energy-efficient materials. The researchers reported in Nature Communications that boron nitride nanotubes, aka BNNTs, assemble themselves into liquid crystals under the right conditions, primarily concentrations above 170 parts per million by…
An international team of researchers has demonstrated a technique that allows them to align gold nanorods using magnetic fields, while preserving the underlying optical properties of the gold nanorods. “Gold nanorods are of interest because they can absorb and scatter specific wavelengths of light, making them attractive for use in applications such as biomedical imaging, sensors, and other technologies,” says Joe Tracy, corresponding author of a paper on the work and a professor of materials science and engineering at North…
Advance shows promise for “meta-bots” designed to deliver drugs or aid rescue missions. A team of UCLA engineers and their colleagues have developed a new design strategy and 3D printing technique to build robots in one single step. A study that outlined the advance, along with the construction and demonstration of an assortment of tiny robots that walk, maneuver and jump, was published in Science. The breakthrough enabled the entire mechanical and electronic systems needed to operate a robot to…
… that has 100 times more light durability than conventional products. Osaka Metropolitan University scientists synthesize new photostable organic semiconductor. Due to their high hole mobility, pentacene and its derivatives have been the representative organic semiconductors and have been the subject of much research, both basic and applied. In particular, they are expected to be applied to semiconductor devices such as field-effect transistors. In addition, organic semiconductors have the advantage of being inexpensive to produce by inkjet printing and having…
Material scientists at Friedrich Schiller University Jena, Germany have developed a mechanoluminescent material that can not only be used to generate a local heat input by means of ultrasound, but also provides feedback on the local temperature at the same time. If mechanoluminescent materials are subjected to external mechanical stress, they emit visible or invisible light. Such excitation can occur due to bending or gentle pressure, for example, but also completely contact-free through ultrasound. In this way, the effect can…
– a promising discovery. A team of researchers from the Max Planck Institute of Colloids and Interfaces (MPICI) and McGill University in Canada discovered strong adhesive properties of white-berry mistletoe. The mistletoe berry’s flexible fibers adhere to both skin and cartilage as well as to various synthetic materials and could find application in many fields, such as wound sealant in biomedicine, through ease of processing. For their research, the materials scientists led by Prof. Dr. Peter Fratzl picked the mistletoe…
UBCO researchers change the game when it comes to activity tracking. The creation of high-resolution extrusion printing—think 3D printing but with ink that conducts electricity—has enabled UBC researchers to explore the potential of wearable human motion devices. Wearable technology—smartwatches, heart monitors, sleep aid devices, even step counters—have become part of everyday life. And researchers with UBC Okanagan’s Nanomaterials and Polymer Nanocomposites Laboratory, have created even smaller, lighter and highly-accurate sensors that can be integrated into clothing and equipment. In collaboration with…
Watch this. Watch for the patterns created as the circles move across each other. Those patterns, created by two sets of lines offset from each other, are called moiré (pronounced mwar-AY) effects. As optical illusions, moiré patterns create neat simulations of movement. But at the atomic scale, when one sheet of atoms arranged in a lattice is slightly offset from another sheet, these moiré patterns can create some exciting and important physics with interesting and unusual electronic properties. Mathematicians at…