Quantum technique accelerates identification of entangled materials. The Science Quantum materials behave in surprising ways because of quantum physics. For example, they can be superconductors, which can allow electricity to flow with no resistance. These materials could lead to completely new technologies. In an advance for quantum materials, scientists tested the ability of techniques called entanglement witnesses to accurately identify pairs of entangled magnetic particles. Entanglement is when one of these particles, or “spins,” mirrors another’s properties and behavior regardless of…
We all look in the mirror at least once a day to see our reflection. Mirrors are used not only in daily life but also in cutting-edge technologies such as semiconductor processing and high-resolution displays. Recently, a powerful Bragg reflection mirror based on high-index metamaterials has been developed that only reflects desired light. A research team led by Professor Gi-Ra Yi (Department of Chemical Engineering) at POSTECH with the research team led by professors Seok Joon Kwon and Pil Jin…
Using commonly available materials and a simple mixing and heating process, polyesters can be transformed into highly recyclable, high-value materials. While plastics or synthetic polymers have many useful properties, their mismanagement has resulted in widespread pollution that chokes up our ecosystems. As a solution to this, many synthetic polymers are sent for reprocessing and recycling; polyethylene terephthalate (PET) is one of the most common products frequently seen in the recycling loop in many countries. However, recycling has its own set…
Insights revealed by a large particle accelerator lit a path forward. For airliners, cargo ships, nuclear power plants and other critical technologies, strength and durability are essential. This is why many contain a remarkably strong and corrosion-resistant alloy called 17-4 precipitation hardening (PH) stainless steel. Now, for the first time ever, 17-4 PH steel can be consistently 3D-printed while retaining its favorable characteristics. A team of researchers from the National Institute of Standards and Technology (NIST), the University of Wisconsin-Madison…
The high-performing fibers could speed-up broadband delivery, improve medical imaging and even make solar powered clothing. Due to their very high efficiency in transporting electric charges from light, perovskites are known as the next generation material for solar panels and LED displays. A team led by Dr Lei Su at Queen Mary University of London now have invented a brand-new application of perovskites as optical fibres. Optical fibres are tiny wires as thin as a human hair, in which light travels…
Computers that can make use of the “spooky” properties of quantum mechanics to solve problems faster than current technology may sound alluring, but first they must overcome a massive disadvantage. Scientists from Japan may have found the answer through their demonstration of how a superconducting material, niobium nitride, can be added to a nitride-semiconductor substrate as a flat, crystalline layer. This process may lead to the easy manufacturing of quantum qubits connected with conventional computer devices. The processes used to…
… by the force exerted by light. Chirality is the property that the structure is not superposable on its mirrored image. Chiral materials exhibit the characteristic feature that they respond differently to left- and right-circularly polarized light (optical activity, Figure 1). When a matter is irradiated with strong laser light, optical force exerts on it. It has been expected theoretically that the optical force exerting on chiral materials by left- and right-circularly polarized light would also be different. The research…
… when squished or stretched. Researchers at the University of California San Diego have developed soft devices containing algae that glow in the dark when experiencing mechanical stress, such as being squished, stretched, twisted or bent. The devices do not require any electronics to light up, making them an ideal choice for building soft robots that explore the deep sea and other dark environments, researchers said. The work was published recently in Nature Communications. The researchers took their inspiration for…
A new design principle can now predict the properties of quantum materials that have hardly been explored so far. For the first time, a strongly correlated topological semimetal has been discovered using a computer. How do you find novel materials with very specific properties – for example, special electronic properties which are needed for quantum computers? This is usually a very complicated task: various compounds are created, in which potentially promising atoms are arranged in certain crystal structures and then…
Scientists from University of Freiburg, Germany, and the University of Pittsburgh develop platform that combines measurements of surface topography in a digital twin. Scientists from the University of Freiburg, Germany, and the University of Pittsburgh have developed a software platform that facilitates and standardizes the analysis of surfaces. The contact.engineering platform enables users to create a digital twin of a surface and thus to help predict, for example, how quickly it wears out, how well it conducts heat, or how…
In the FOXIP project, researchers form Empa, EPFL and the Paul Scherrer Institute attempted to print thin-film transistors with metal oxides onto heat-sensitive materials such as paper or PET. The goal was ultimately not achieved, but those involved consider the project a success – because of a new printing ink an a transistor with “memory effect”. The bar was undoubtedly set high: In the research project Functional Oxides Printed on Polymers and Paper – FOXIP for short – the goal…
A team of researchers have observed and reported for the first time the unique microstructure of a novel ferroelectric material, enabling the development of lead-free piezoelectric materials for electronics, sensors, and energy storage that are safer for human use. This work was led by the Alem Group at Penn State and in collaboration with research teams at Rutgers University and the University of California, Merced. Ferroelectrics are a class of materials that demonstrate a spontaneous electric polarization when an external…
A research group led by Prof. WU Kaifeng from the Dalian Institute of Chemical Physics (DICP) of the Chinese Academy of Sciences (CAS), in collaboration with Dr. Peter C. Sercel from the Center for Hybrid Organic Inorganic Semiconductors for Energy, recently reported the utilization of lattice distortion in lead halide perovskite quantum dots (QDs) to control their exciton fine structure. The study was published in Nature Materials on Sept. 8. It is well known that shape or crystal anisotropy in…
Structural damage in lightweight components – caused by bird strikes on an aircraft wing, for example – is often difficult to detect using conventional non-destructive testing methods. Two new research robots at the Institute of Polymer Technology (IKT) at the University of Stuttgart, working autonomously and synchronously, are intended to optimize the testing technology for multifunctional high-performance materials. With a soft whir, JAMES raises its arm and grabs a tool head. Almost like a dancer, the robot moves freely through…
A group of chemists from Kaunas University of Technology in Lithuania, the authors of numerous breakthrough innovations in the solar energy field, proposed yet another solution to increase the stability and performance of perovskite solar elements. They synthesised a new class of carbazole-based cross-linkable materials, which are resistant to various environmental effects, including strong solvents used in the production of solar cells. When applied as hole transporting layers, the new materials developed at Kaunas University of Technology (KTU) labs, helped…
… into a 100-times stronger, ductile hybrid carbon microlattice material. Developing a lightweight material that is both strong and highly ductile has been regarded as a long-desired goal in the field of structural materials, but these properties are generally mutually exclusive. Researchers at City University of Hong Kong (CityU) recently discovered a low-cost, direct method to turn commonly used 3D printable polymers into lightweight, ultra-tough, biocompatible hybrid carbon microlattices, which can be in any shape or size, and are 100…