Discovery of new property in commonly used plastic leads to invention
Engineers at Princeton University and Hewlett-Packard have invented a combination of materials that could lead to cheap and super-compact electronic memory devices for archiving digital images or other data.
The invention could result in a single-use memory card that permanently stores data and is faster and easier to use than a compact disk. The device could be very small because it would not involve movi
Superb conductors of heat and infinitesimal in size, carbon nanotubes might be used to prevent overheating in next-generation computing devices or as fillers to enhance thermal conductivity of insulating materials, such as durable plastics or engine oil. But a research team at Rensselaer Polytechnic Institute has discovered that the nanotubes’ role as thermal superconductors is greatly diminished when mixed with materials such as polymers that make up plastics.
“Carbon nanotubes are superio
Plastic lamp-posts that cause less damage on collision could save hundreds of lives across Europe. In the UK alone, over 500 motorists are killed each year hitting roadside objects such as lampposts. The collapsing posts developed in this EUREKA project E! 2534 THERMOPOLE are able to absorb much of the force in a collision, saving the car driver from the full impact.
According to Gerry Boyce, Director of the UK lead partner Euro Projects, “the THERMOPOLE project team “set out to create a la
Thanks to a team of materials scientists at Northwestern University, molecular electronics may be one step closer to reality. The researchers, led by Mark Hersam, assistant professor of materials science and engineering, have become the first to measure a unique and versatile nanoelectronic effect — called resonant tunneling — through individual molecules mounted directly on silicon.
The findings were published online Nov. 1 by Nano Letters, a publication of the American Chemical Society.
Molecular coating could aid nanoscale assembly, microfuidics
Materials researchers at Iowa State University, working in part under a grant from the National Science Foundation, have demonstrated a novel coating that makes surfaces “smart”—meaning the surfaces can be switched back and forth between glassy-slick and rubbery on a scale of nanometers, the size of just a few molecules.
Possible applications include the directed assembly of inorganic nanoparticles, proteins, and na
Silicone rubber and other rubber-like materials have a wide variety of uses, but in almost every case they must be reinforced with particles to make them stronger or less permeable to gases or liquids. University of Cincinnati (UC) chemistry professor James Mark and colleagues have devised a technique that strengthens silicone rubber with nanoscale particles, but leaves the material crystal clear.
Silicone rubber is often reinforced by tiny particles of silica (the primary component of sand
Scientist have created a new material which could save the electronics industry millions of pounds each year and could also be more effective.
Several attempts have been made over the last twenty years to make gold nitride but now a researcher at the University of Newcastle upon Tyne has solved the puzzle.
Gold is used extensively in the electronics industry, as a conductor of electricity in products such as computers, mobile phones and smart cards. This is because it is relatively
The addition of buckyballs or carbon nanotubes to nematic liquid crystals changes their properties and makes them low-cost alternatives for holographic and image processing applications, according to Penn State electrical engineers.
“By incorporating nanotubular and nano carbon 60 structures into liquid crystals, we make the nonlinear optical properties a million times bigger than all other existing materials,” says Dr. Iam-Choon Khoo, professor of electrical engineering.
Khoo, work
Researchers at the Georgia Institute of Technology have developed a new class of nanometer-scale structures that spontaneously form helical shapes from long ribbon-like single crystals of zinc oxide (ZnO). Dubbed “nanosprings,” the new structures have piezoelectric and electrostatic polarization properties that could make them useful in small-scale sensing and micro-system applications.
Just 10 to 60 nanometers wide and 5-20 nanometers thick – but up to several millimeters long – the new st
It is hard to imagine that graphite, the soft “lead” of pencils, can be transformed into a form that competes in strength with its molecular cousin diamond. Using a diamond anvil to produce extreme pressures and the ultra-brilliant X-ray beams at the Advanced Photon Source in Illinois, scientists with the High-Pressure Collaborative Access Team (HPCAT)* have surmounted experimental obstacles to probe the changes that graphite undergoes to produce this unique, super-hard substance. The study is report
If all goes as planned, two rovers named Spirit and Opportunity will explore the surface of Mars next year, gathering a wealth of geologic information and beaming the results back to Earth. However, the environment is so extreme that the rovers will be equipped with heaters to keep the electronic gear warm enough to operate properly over the Martian winter when temperatures can dip to -120 degrees C. Future space probes will involve even more extreme environments, with temperatures as high as 460 deg
Metal detectors have become so commonplace that you might think we know all we need to about them. However, the law enforcement community must continually update performance standards for metal detectors to ensure that new products purchased in the marketplace operate at specified minimum levels. Further-more, they must know if exposure to the magnetic fields generated by metal detectors affects the functioning of personal medical electronic devices (such as cardiac defibrillators, infusion pumps, sp
The cloudy look on cleaned glass is scattered light, not streaks of dirt
A fundamental discovery about the behavior of cooling glass could have a significant impact on the glass- and plastic-making industries, say researchers at Lehigh University.
Himanshu Jain, Diamond chair and professor of materials science and engineering at Lehigh, says the breakthrough was made possible by a combination of nanoscopic science and an old-fashioned kitchen recipe.
When molten glass i
U of T scientists have developed a new class of hybrid materials combining organic and inorganic elements that could lead to improved computer chips, among other applications. The computer industry is faced with a conundrum: as chip components become smaller and faster, the increased electrical resistance and capacitance they generate ultimately slows performance. The silica that insulates individual components becomes less effective as chip components shrink in size. A new material develope
…and bring high power to small packages
Researchers have developed a new family of glasses that will bring higher power to smaller packages in lasers and optical devices and provide a less-expensive alternative to many other optical glasses and crystals, like sapphire. Called REAl(tm) Glass (Rare-earth – Aluminum oxide), the materials are durable, provide a good host for atoms that improve laser performance, and may extend the range of wavelengths that a single laser can currently
The interest sparked by airspace themes has once again brought together, in the Basque city of Donostia-San Sebastián, representatives of the main European enterprises in these sectors to deal with the applications of innovative materials capable of providing greater safety, longer life and increased wear to aircraft parts and components. Airspace sector experts from companies such as Sener, EADS-Airbus, CESA, amongst others, came together to analyse the applications of composite materials (composite