Materials Sciences

Materials Sciences

New Math Model Reveals Calcium Pathway in Heart Cells

Advance helps in arrythmia research

Scientists at Washington University in St. Louis have developed the first mathematical model of a canine cardiac cell that incorporates a vital calcium regulatory pathway that has implications in life-threatening cardiac arrhythmias, or irregular heartbeats.

Thomas J. Hund, Ph.D., post-doctoral researcher in Pathology ( in Dr. Jeffrey Saffitz laboratory) at the Washington University School of Medicine, and Yoram Rudy, The Fred Saigh D

Materials Sciences

New Sensor Technology Detects Package Tampering Effectively

Or tell you when it’s time to reel in that big fish

In a world with an intensified need for security, Case Western Reserve University researchers are developing materials that could make consumers less susceptible to product tampering or failures. Using a mixture of conventional polymers with small amounts of tailored fluorescent dyes, Case researchers have discovered that the dyes function as natural, molecular sensors, creating light-emitting polymer blends that show mechanical s

Materials Sciences

Optimizing Surfaces with Fullerenes for Anti-Wear Solutions

The problem of the tribological behaviour of materials had focussed on either improving friction or prioritising less wear and tear. The target of FOREMOST project (“FOREMOST: fullerene-based opportunities for robust engineering: making optimised surfaces for tribology”) is to achieve both effects simultaneously and, tot his end, the project will be based on the use of inorganic fullerenes (molybdenum bisulphate and bisulphate of wolframite). These new alotropic states of these well-known soli

Materials Sciences

Quickly Mineralize Wood: Breakthrough at Pacific Northwest Lab

Pacific Northwest National Laboratory scientists can mineralize wood in record time

California has Silicon Valley. Could a Silicon Forest in Washington be next? A team of materials scientists from Pacific Northwest National Laboratory is on it.

Yongsoon Shin and colleagues at the Department of Energy lab have converted wood to mineral, achieving in days what it takes nature millions of years to do in such places as the Gingko Petrified Forest, an hour up the Columbia Riv

Materials Sciences

’Bumpy’ glass could lead to self-cleaning windows, slick micromachines

Ohio State University engineers are designing super-slick, water-repellent surfaces that mimic the texture of lotus leaves.

The patent-pending technology could lead to self-cleaning glass, and could also reduce friction between the tiny moving parts inside microdevices.

Scientists have long known that the lotus, or water lily, makes a good model for a water-repellent surface, explained Bharat Bhushan, Ohio Eminent Scholar and the Howard D. Winbigler Professor of mechanical

Materials Sciences

Plastics From Orange Peel: A Sustainable Innovation

A Cornell University research group has made a sweet and environmentally beneficial discovery — how to make plastics from citrus fruits, such as oranges, and carbon dioxide.

In a paper published in a recent issue of the Journal of the American Chemical Society (Sept. 2004), Geoffrey Coates, a Cornell professor of chemistry and chemical biology, and his graduate students Chris Byrne and Scott Allen describe a way to make polymers using limonene oxide and carbon dioxide, with t

Materials Sciences

Carbon Nanotube "Shock Absorbers" Excel At Dampening Vibration

Researchers at Rensselaer Polytechnic Institute have developed a novel carbon-nanotube-based material that chokes vibration and may have applications for both large and small devices.

In the January 9, 2004, advance online edition of Nature Materials, the researchers describe the new material and demonstrate its usefulness as a filler to enhance traditional vibration-reduction materials.

Conducted by Nikhil Koratkar and colleagues at Rensselaer, the research arose from Ko

Materials Sciences

Secrets of Abalone Shell Inspire Next-Gen Armor Innovation

Engineering researchers at the University of California, San Diego are using the shell of a seaweed-eating snail as a guide in the development of a new generation of bullet-stopping armor. The colorful oval shell of the red abalone is highly prized as a source of nacre, or mother-of-pearl, jewelry, but the UCSD researchers are most impressed by the shell’s ability to absorb heavy blows without breaking.

In a paper published in the Jan. 15 issue of Materials Science and Engin

Materials Sciences

Carbon nanotube ’shock absorbers’ excel at dampening vibration

Researchers at Rensselaer Polytechnic Institute have developed a novel carbon-nanotube-based material that chokes vibration and may have applications for both large and small devices.

In the January 9, 2004, advance online edition of Nature Materials, the researchers describe the new material and demonstrate its usefulness as a filler to enhance traditional vibration-reduction materials.

Conducted by Nikhil Koratkar and colleagues at Rensselaer, the research arose fro

Materials Sciences

Demystifying Quantum Properties of Exotic Materials

International team shows collapse of Fermi volume in quantum critical matters

Modern materials science has been a boon for electronics, providing average consumers with palm-sized computers that would have filled a room just a few years ago for instance. But the push to create materials with radically new electronic properties has also produced a host of experimental results that textbook theories simply cannot explain.

In the Dec. 16 issue of Nature magazine, a team

Materials Sciences

New Body Armor Innovation Enhances Soldier Safety in Combat

When it comes to protecting America’s combat troops in battle, research under way at the Florida A&M University-Florida State University College of Engineering could be a lifesaver.

Under a partnership with Armor Holdings, Inc. of Jacksonville, FSU researchers are developing and testing first-of-its-kind body armor for soldiers’ arms and legs that could reduce fatalities and loss of limbs when they are wounded.

“Most of the folks who die in military conflicts don&

Materials Sciences

Scientists Find Atomic Clues to Tougher Ceramics

Advanced ceramics are wonderful materials – they withstand temperatures that would melt steel and resist most corrosive chemicals. If only they weren’t so brittle. Poor resistance to fracture damage has been the major drawback to the widespread use of advanced ceramics as structural materials. Help, however, may be on the way.

A collaboration of scientists led by researchers with the U.S. Department of Energy’s Lawrence Berkeley National Laboratory (Berkeley Lab) has uncovered cl

Materials Sciences

Innovative Building Materials for Interplanetary Stations

A new technology developed by Russian scientists with support of the International Science & Technology Center allows to produce antennas and telescope mirrors, walls and partitions for a space station, solar panels and even houses on the Moon or the Mars. All the above can be produced quickly, strongly, reliably, with minimal consumption of time, place, energy and money.

These building materials or rather peculiar semi-manufactured articles for future constructions will be brou

Materials Sciences

Transforming Corrugated Cardboard with Innovative Honeycomb Core

Corrugated cardboard is an excellent packaging material that is widely used for transporting, storing and protecting goods. Through the new process developed by EUREKA project E! 1929 FACTORY FOLDHEX, corrugated cardboard can be transformed into a new honeycomb core that offers reduced weight, uses less raw material and achieves better crash absorption and higher compression resistance than double flute corrugated cardboard.

Honeycomb cores are already used in a variety of appl

Materials Sciences

Exploring Spider Silk: The Future of Ecological Materials

Spider silks could become the intelligent materials of the future, according to a review article published this month in the journal Microbial Cell Factories. The characteristics of spider silk could have applications in areas ranging from medicine to ballistics.

The distinctive toughness of spider silk could allow manufacturers to improve wound-closure systems and plasters, and to produce artificial ligaments and tendons for durable surgical implants. The silk could also be wo

Materials Sciences

Innovative Plastic Electronics: Smart Clothing and Beyond

In the future, the phrase smarty pants might be taken quite literally, referring to trousers embedded with electronic “intelligence” so that they change color, for example, in response to their surroundings.

The timing of this vernacular twist will depend on when plastic “chips” become practical–so cheap and reliable that electronic circuits can be printed not only on clothing but also on paper, billboards and nearly anything else. Unlike today’s largely silicon-based tech

Feedback