Materials Sciences

Materials Sciences

Polymer Composites Outperform Steel in Ship Fire Safety

The U.S. Navy needs lighter materials so ships will go further faster. One way to do that is to use new composite materials. But how will these materials respond to fire — one of the most critical safety concerns on a ship? Virginia Tech material scientists have developed models to test composites for fire resistance – and have a recommendation.

John Bausano, a doctoral student in the chemistry-engineering interdisciplinary Macromolecular Science and Infrastructure Engineering program at

Materials Sciences

Student Develops Multi-Patterned Surface for Tissue Growth Study

Modern medicine has the desire to replace damaged tissue with newly grown tissue, such as to repair skin, bone, cartilage, or arteries. But what kinds of surfaces could be used to grow suitable tissues?

Suolong Ni, a graduate student in chemistry at Virginia Tech, has fabricated a biopolymer onto solid surfaces with a range of properties to enable the study of the effects of different surfaces on cell adhesion and tissue growth. He will present his research in the Excellence in Graduate Po

Materials Sciences

Simulating Defects in Amorphous Boron-Cobalt Alloys

Simulation of local microstructure of amorphous alloys

Modern engineering places increasing demands on components. It is the job of the designers and materials scientists to create components that are up to the challenge.

Many new materials and components can be time consuming and expensive to manufacture with costs escalating if samples or trials prove unsuitable. Computer modelling goes some way to minimizing the developments costs and fast tracking development.

Materials Sciences

Full-Colour Fingerprints: Advancing Security with Photonic Crystals

Experiment reveals layers of data missed by traditional ink fingerprints

In the future, law enforcement officials may take full-colour fingerprints using new technology developed by a University of Toronto-led team of international researchers.

Far from the basic black-and-white fingerprints collected today, the new technology would use elastic photonic crystals to capture data-rich fingerprints in multiple colours, but the fingerprinting technique is just one potent

Materials Sciences

Coffee’s Role in Lowering Alcohol-Induced Pancreatitis Risk

Scientists at the University of Liverpool have found how coffee can reduce the risk of alcohol-induced pancreatitis.

Pancreatitis is a condition in which the pancreas becomes inflamed, causing severe abdominal pain. It is often triggered by alcohol consumption which causes digestive enzymes to digest part of the pancreas.

Scientists have known for some time that coffee can reduce the risk of alcoholic pancreatitis, but have been unable to determine how. Researchers at

Materials Sciences

Tougher Electronic Components: Materials Science Innovations

Materials science gets a nitride boost

Like modern day alchemists, materials scientists often turn unassuming substances into desirable ones. But instead of working metal into gold, they create strange new compounds that could make the electronic components of the future smaller, faster, and more durable. Alexander Goncharov of the Carnegie Institution’s Geophysical Laboratory and colleagues* have used extreme temperatures and pressures to make two durable compounds call

Materials Sciences

Liquid Crystals: A New Tool for Embryonic Stem Cell Control

Liquid crystals, the same phase-shifting materials used to display information on cell phones, monitors and other electronic equipment, can also be used to report in real time on the differentiation of embryonic stem cells.

Differentiation is the process by which embryonic stem cells gradually turn into function-specific types of adult cells or so-called “cell lineages,” including skin, heart or brain cells.

The main challenge facing stem cell research is that of gui

Materials Sciences

Biocompatible Nanoparticles: New Drug Delivery Capsules

An innovative strategy of mixing lipids and nanoparticles to produce new drug and agricultural materials and delivery vehicles has been developed by researchers at the University of Illinois at Urbana-Champaign.

“This is a new way to make nano-size capsules of a biologically friendly material,” said Steve Granick, a professor of materials science and engineering, chemistry and physics. “The hollow, deformable and biofunctional capsules could be used in drug delivery, colloidal-based b

Materials Sciences

Key Brain Area Linked to Maths Ability, Study Reveals

Scientists at UCL (University College London) have discovered the area of the brain linked to dyscalculia, a maths learning disability. The finding shows that there is a separate part of the brain used for counting that is essential for diagnosis and an understanding of why many people struggle with maths.

The paper, published online today in the Proceedings of the National Academy of Sciences (PNAS), explains that an area of the brain widely thought to be involved in processing number

Materials Sciences

Space Suit Tech: New Gear to Prevent Heatstroke in Workers

The technology used in space suits to protect astronauts carrying out space walks in direct sunlight is now being used to develop protective clothing to safeguard firefighters and steel workers who often work in extremely hot and dangerous conditions.

“The existing protective clothing used while performing physically demanding work in hot conditions can, in many cases, hinder workers’ ability to remain cool,” explains Stefano Carosio from the Italian company D’Appoloni

Materials Sciences

’Nano skins’ show promise as flexible electronic devices

A team of researchers has developed a new process to make flexible, conducting ’nano skins’ for a variety of applications, from electronic paper to sensors for detecting chemical and biological agents. The materials, which are described in the March issue of the journal Nano Letters, combine the strength and conductivity of carbon nanotubes with the flexibility of traditional polymers.

“Researchers have long been interested in making composites of nanotubes and polymers, but i

Materials Sciences

Ceria: A Breakthrough Catalyst for Fuel Cell Anodes

Researchers at the California Institute of Technology have discovered that ceria (or cerium dioxide) is an excellent catalyst for fuel cell anodes. This discovery was made through careful electrochemical characterization using a.c. impedance spectroscopy, an important tool for studying the electrical transport behavior of ceramics. The study is published in the Journal of the American Ceramic Society.

By applying an a.c. electrical voltage to the ceria (a white crystalline p

Materials Sciences

MIT Researchers Create Safer Metal Alloys with Tiny Crystals

MIT researchers have devised a new method for shrinking the size of crystals to make safer metal alloys. The new materials could replace metal coatings such as chromium, which is dangerous for factory workers to produce.

The method, developed by Associate Professor Christopher Schuh and graduate student Andrew Detor, both of the Department of Materials Science and Engineering, involves making the crystals within an alloy (a combination of two or more metals) smaller and thus hard

Materials Sciences

Exploring Nanostructures from Corrosion: Innovations Unveiled

The effect of corrosion has an impact on about 3% of the world’s Gross Domestic Product. From a positive point of view, however, chemical attack of metal surfaces may result into surface nano-structures with very interesting technological applications such as catalysts and sensors. Therefore, a better understanding of corrosion processes is required to both prevent it and make the most of it. Scientists from Germany and the European Synchrotron Radiation Facility (ESRF) have highlighted a self-

Materials Sciences

Nanotubes Enhance Materials for Vibration Reduction

New composites could remove buzz from speakers, sting from golf clubs

A new study suggests that integrating nanotubes into traditional materials dramatically improves their ability to reduce vibration, especially at high temperatures. The findings could pave the way for a new class of materials with a multitude of applications, from high-performance parts for spacecraft and automobile engines, to golf clubs that don’t sting and stereo speakers that don’t buzz.

The mate

Materials Sciences

Self-Cleaning Bathroom Coatings: A Breakthrough Innovation

Cleaning bathrooms may become a thing of the past with new coatings that will do the job for you.

Researchers at the University of New South Wales are developing new coatings they hope will be used for self-cleaning surfaces in hospitals and the home.

Led by Professor Rose Amal and Professor Michael Brungs of the ARC Centre for Functional Nanomaterials, a research team is studying tiny particles of titanium dioxide currently used on outdoor surfaces such as self-cleaning w

Feedback