– of any size or shape. Researchers have developed next-generation smart textiles – incorporating LEDs, sensors, energy harvesting, and storage – that can be produced inexpensively, in any shape or size, using the same machines used to make the clothing we wear every day. The international team, led by the University of Cambridge, have previously demonstrated that woven displays can be made at large sizes, but these earlier examples were made using specialised manual laboratory equipment. Other smart textiles can…
Unique smart fabric is the first to change both colour and shape in response to two different stimuli. A new smart material developed by researchers at the University of Waterloo is activated by both heat and electricity, making it the first ever to respond to two different stimuli. The unique design paves the way for a wide variety of potential applications, including clothing that warms up while you walk from the car to the office in winter and vehicle bumpers…
Car2Car project develops technologies for an optimized recycling of end-of-life vehicles. In the Car2Car project, recyclers and scientists addresses the challenges of closing material loops. The focus lies on increasing the quality of the secondary raw materials from end-of-life vehicles by means of innovative dismantling and automated, accurate detection and processing solutions. The Helmholtz Institute Freiberg for Resource Technology, an institute of the HZDR, contributes its expertise in material recognition using spectroscopy-based sensor technology together with efficient data processing solutions….
… more sustainable, more cost-effective, gentler. Clinically effective, custom-made, discreet and comfortable – the demands on aligners for the therapy of malocclusions are high. This also applies to the material of these orthodontic splints. A team at the Fraunhofer Institute for Applied Polymer Research IAP in Potsdam, Germany, in cooperation with the University Hospital in Düsseldorf, Germany, has now developed a highly innovative material that enables completely new treatment concepts and reduces costs. The scientists focused on polymers with shape…
Fraunhofer IFAM and Sunfire launch project to scale AEM technology for industry applications. Research and industry have recognized the potential of alkaline AEM electrolysis and expect a fast technology development during the next decade. Fraunhofer IFAM and sunfire, together with Canadian materials partner Ionomr Innovations, are now launching the “Integrate” research project to apply the promising technology on an industrial scale. To produce cost-effective green hydrogen, industry and energy companies need efficient electrolyzers on a large scale. Technologies such as…
Findings show similarities to and differences from cuprate superconductors, including more complex electronic structure. Scientists at the U.S. Department of Energy’s (DOE) Brookhaven National Laboratory have discovered new details about the electrons in a nickel-based family of superconducting materials. The research, described in two papers published in Physical Review X, reveals that these nickel-based materials have certain similarities with—and key differences from—copper-based superconductors. Comparing the two kinds of “high-temperature” superconductors may help scientists zero in on key features essential for these…
Researchers develop stretchable OLED display. Imagine a thin, digital display so flexible that you can wrap it around your wrist, fold it in any direction, or curve it over your car’s steering wheel. Researchers at the Pritzker School of Molecular Engineering (PME) at the University of Chicago have designed just such a material, which can bend in half or stretch to more than twice its original length while still emitting a fluorescent pattern. The material, described in Nature Materials, has a wide…
… everybody needs some body. The typical image of a robot is one composed of motors and circuits, encased in metal. Yet the field of molecular robotics, which is being spearheaded in Japan, is beginning to change that. Much like how complex living organisms are formed, molecular robots derive form and functionality from assembled molecules. Such robots could have important applications, such as being used to treat and diagnose diseases in vivo. The first challenge in building a molecular robot…
The discovery of new quantum materials with magnetic properties are believed to pave the way for ultra-fast and considerably more energy efficient computers and mobile devices. So far, these types of materials have been shown to work only in extremely cold temperatures. Now, a research team at Chalmers University of Technology in Sweden are the first to make a device made of a two-dimensional magnetic quantum material work in room temperature. Today’s rapid IT expansion generates enormous amounts of digital…
»BioFusion 4.0« transfers principles from nature into industrial manufacturing to achieve sustainable and circular value creation. At this year‘s Hannover Messe from April 17 to 21, 2023, Fraunhofer IPK demonstrates how biogenic materials and digital solutions can be used to design resilient production processes and sustainable products. Biological transformation is the transfer of principles of natural systems to technical materials, structures and processes. Within the research project »BioFusion 4.0«, Fraunhofer IPK, the Technische Universität Berlin, Mercedes-Benz AG and the Werner-von-Siemens…
These highly stable metal-organic frameworks could be useful for applications such as capturing greenhouse gases. Materials known as metal-organic frameworks (MOFs) have a rigid, cage-like structure that lends itself to a variety of applications, from gas storage to drug delivery. By changing the building blocks that go into the materials, or the way they are arranged, researchers can design MOFs suited to different uses. However, not all possible MOF structures are stable enough to be deployed for applications such as…
Artificial muscles and nerves made from the shape memory alloy nickel-titanium are making robot arms as supple and agile as their animal counterparts. But these artificial limbs also weigh less, will work tirelessly and can be precisely controlled. The bionic robot arms that are being developed by Professor Stefan Seelecke’s research team at Saarland University in collaboration with the German automation specialist Festo consume very little electric power and can work safely with humans. The research team will be presenting…
Rice, UMD lead effort to overcome major barrier. They’re considered some of the strongest materials on the planet, but tapping that strength has proved to be a challenge. 2D materials, thinner than the most delicate onionskin paper, have attracted intense interest because of their incredible mechanical properties. Those properties, however, dissipate when the materials are stacked in multiple layers, thus limiting their usefulness. “Think of a graphite pencil,” says Teng Li, Keystone Professor at the University of Maryland’s (UMD) Department of Mechanical…
Advanced materials become increasingly complex due to the high requirements they have to fulfill regarding sustainability and applicability. Dierk Raabe, and colleagues reviewed the use of artificial intelligence in materials science and the untapped spaces it opens if combined with physics-based simulations. Compared to traditional simulation mehtods AI has several advantages and will play a crucial role for material sciences in the future. Max Planck scientists explore the possibilities of artificial intelligence in materials science and publish their review in…
When it comes to sustainability and green steel, everybody talks about hydrogen. But current means of storing and transporting hydrogen request high pressures and low temperatures, which are both energetically and economically costly. Ammonia is known to be a good hydrogen carrier. Yan Ma and colleagues show that ammonia can not only be used to carry hydrogen but also for the direct redcution of iron which makes ammonia a vialbe cnadidate to overcome the shortcomings of hydrogen. Max Planck materials…
Composite materials provide stability in aircraft parts, sports equipment, and everyday household items. However, most of these materials have a poor carbon footprint and are not naturally degradable. A more sustainable alternative has been developed by a team from the University of Stuttgart led by Dr. Linus Stegbauer from the Institute of Interfacial Process Engineering and Plasma Technology (IGVP). This completely bio-based composite material is made of flax fibers and the biopolymer chitosan. As the name suggests, composites consist of…