Li-fi, a communication technology harnessing visible light for data transmission, has a potential to surpass Wi-Fi’s speed by over 100 times and boasts a high bandwidth, facilitating the simultaneous transmission of copious information. Notably, Li-fi ensures robust security by exclusively transmitting data to areas illuminated by light. Most importantly, it capitalizes on existing indoor lighting infrastructure, such as LEDs, eliminating the need for separate installations. However, implementing visible light communication (VLC) in practical lighting systems posed an issue of diminished…
… by magnetization direction. First direct observation of anisotropic magneto-Thomson effect. 1. NIMS has succeeded in directly observing the “anisotropic magneto-Thomson effect,” a phenomenon in which the heat absorption/release proportional to an applied temperature difference and charge current (i.e., Thomson effect) changes anisotropically depending on the magnetization direction in magnetic materials. This research is expected to lead to further development of basic physics and materials science related to the fusion area of thermoelectrics and spintronics, as well as to development…
High-frequency terahertz waves have great potential for a number of applications including next-generation medical imaging and communication. Researchers at Linköping University, Sweden, have shown, in a study published in the journal Advanced Science, that the transmission of terahertz light through an aerogel made of cellulose and a conducting polymer can be tuned. This is an important step to unlock more applications for terahertz waves. The terahertz range covers wavelengths that lie between microwaves and infrared light on the electromagnetic spectrum….
Researchers at the University of Chicago’s Pritzker School of Molecular Engineering (PME), Argonne National Laboratory, and the University of Modena and Reggio Emilia have developed a new computational tool to describe how the atoms within quantum materials behave when they absorb and emit light. The tool will be released as part of the open-source software package WEST, developed within the Midwest Integrated Center for Computational Materials (MICCoM) by a team led by Prof. Marco Govoni, and it helps scientists better understand and engineer…
Research Group from Friedrich Schiller University Jena, University of Leipzig, and University of Vienna Develops a Glass Material That Precisely Separates Gases. Separating carbon dioxide molecules from gas mixtures requires materials with extremely fine pores. Researchers from Friedrich Schiller University Jena, in cooperation with the University of Leipzig and the University of Vienna, have now found a novel way to do this: they transformed crystalline metal-organic framework compounds into glass. In doing so, they managed to reduce the pore size…
UCLA-led team maps medium- and high-entropy alloys and identifies potential to tune their properties, making them both stronger and more flexible. Alloys, which are materials such as steel that are made by combining two or more metallic elements, are among the underpinnings of contemporary life. They are essential for buildings, transportation, appliances and tools — including, very likely, the device you are using to read this story. In applying alloys, engineers have faced an age-old trade-off common in most materials:…
Researchers at Nagoya University in Japan have used artificial intelligence to discover a new method for understanding small defects called dislocations in polycrystalline materials, materials widely used in information equipment, solar cells, and electronic devices, that can reduce the efficiency of such devices. The findings were published in the journal Advanced Materials. Almost every device that we use in our modern lives has a polycrystal component. From your smartphone to your computer to the metals and ceramics in your car….
Bayreuth scientists produce superhard multifunctional carbon nitrides. In a groundbreaking piece of research, scientists have synthesised long-sought carbon nitrogen compounds and unlocked the potential of carbon nitrides as a new class of superhard multifunctional materials that could rival diamond. The work has now been published in the journal Advanced Materials. Since 1989, when a prediction of a carbon-nitrogen compound C₃N₄ with exceptional mechanical properties, potentially surpassing diamond in hardness was reported in the journal Science, researchers worldwide have been working…
Researchers at North Carolina State University have now identified a welding technique that can be used to join composite metal foam (CMF) components together without impairing the properties that make CMF desirable. CMFs hold promise for a wide array of applications because the pockets of air they contain make them light, strong and effective at insulating against high temperatures. CMFs are foams that consist of hollow, metallic spheres – made of materials such as stainless steel or titanium – embedded…
The breakthrough is a step towards the development of next-generation magnetic devices that control light. In a significant advancement in optical technology, researchers from Tohoku University and Toyohashi University of Technology have developed a new method for creating transparent magnetic materials using laser heating. This breakthrough, recently published in the journal Optical Materials, presents a novel approach to integrating magneto-optical materials with optical devices, a long-standing challenge in the field. “The key to this achievement lies in creating ‘Cerium-substituted Yttrium…
Multi-scale approach improves the fatigue threshold of particle-reinforced rubber. Researchers from the Harvard John A. Paulson School of Engineering and Applied Sciences (SEAS) have increased the fatigue threshold of particle-reinforced rubber, developing a new, multiscale approach that allows the material to bear high loads and resist crack growth over repeated use. This approach could not only increase the longevity of rubber products such as tires but also reduce the amount of pollution from rubber particles shed during use. The research…
Researchers from the Bavarian Centre for Battery Technology and the “SolTech” research network at the University of Bayreuth have presented a new production method for electrocatalysts: a fast, low-temperature synthesis of special ceramic materials (high-entropy oxides). The results from the Chair of Physical Chemistry III and the Max Planck Institute for Iron Research in Düsseldorf could make the electrolysis of water and the associated hydrogen production more energy-efficient in the future. The results have now been published in the journal…
The one-step fabrication process rapidly produces miniature chemical reactors that could be used to detect diseases or analyze substances. MIT researchers have used 3D printing to produce self-heating microfluidic devices, demonstrating a technique which could someday be used to rapidly create cheap, yet accurate, tools to detect a host of diseases. Microfluidics, miniaturized machines that manipulate fluids and facilitate chemical reactions, can be used to detect disease in tiny samples of blood or fluids. At-home test kits for Covid-19, for…
Research team identifies new details of a promising phenomenon. To magnetize an iron nail, one simply has to stroke its surface several times with a bar magnet. Yet, there is a much more unusual method: A team led by the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) discovered some time ago that a certain iron alloy can be magnetized with ultrashort laser pulses. The researchers have now teamed up with the Laserinstitut Hochschule Mittweida (LHM) to investigate this process further. They discovered that the…
Researchers from EPFL have resolved a long-standing debate surrounding laser additive manufacturing processes with a pioneering approach to defect detection. The progression of laser additive manufacturing — which involves 3D printing of metallic objects using powders and lasers — has often been hindered by unexpected defects. Traditional monitoring methods, such as thermal imaging and machine learning algorithms, have shown significant limitations. They often either overlook defects or misinterpret them, making precision manufacturing elusive and barring the technique from essential industries…
Welding thermoplastic aircraft fuselage structures. Successful “MFFD” stakeholder event in Stade with groundbreaking results for the automated assembly of thermoplastic aircraft fuselage structures. On November 28, 2023, a stakeholder event with around 100 participants took place in the context of the “Multi Functional Fuselage Demonstrator” (“MFFD”) at the Fraunhofer Institute for Manufacturing Technology and Advanced Materials IFAM in the Research Center CFK NORD in Stade, Germany. With the participation of the European project partners, a comprehensive overview of the current…