Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Electric vehicles

Fuel cells and the electric motor are examples of highly-efficient, electric drive trains. Electric vehicles are expected to one day outstrip sales of combustion engines vehicles. Innovative technologies such as fuel cells, electric motors and electric vehicles will influence our future mobility. The market for electric vehicles boasts the most potential.

Fuel cells, electric motors and electric vehicles are currently experiencing a breakthrough. Fuel cells are being used in new applications such as automobiles or laptop computers. Like electric vehicles, fuel cells are still in the development phase however. The potential is far from being exploited. Because a genuine fuel cell boom is anticipated, mass production is already underway. Like fuel cells, the application potential for electric motors and electric vehicles is still in its infancy stage. The discovery of the relationship between magnetic fields and electricity laid the foundation for the electric motor, and thus the electric vehicle. The electric motor that eventually resulted from this discovery is driven by the Lorentz force, which is the force on an electric charge as it moves through a magnetic field. The development of traditional technologies such as fuel cells and the electric motor has led to a rise in environmentally-friendly electric vehicles. Hybrid vehicles are still dominating the market in the segment for environmentally-friendly automobiles however. Utilizing a combination of combustion and electric motors, hybrid vehicles are slimmed-down versions of the electric vehicle.

Fuel cells

Fuel cells are based on the principle of a galvanic process. The composition of a fuel cell is influenced by both electrodes. The fuel cell energy stems from the electrode potential, which is created by the charging of the anode and cathode. The charging results in a potential difference in the fuel cell, which is eventually transformed into electric energy. From its discovery, to today's high-technology status, the fuel cell has experienced an astounding development. Fuel cells are already being used in a variety of applications today. But its impressive career is far from over. Because of their simple operation, the use of fuel cells in electric vehicles represents the market of the future.

The electric motor

Theelectric motor began as an electromechanical transformer. As the description implies, the electric motor is capable of transforming electricity into mechanical energy. The electric motor functions by transforming its mechanical force into motion. Like fuel cell technology, the electric motor is a popular drive train alternative in electric vehicles. The development of the electric motor as a drive train for electric vehicles is still a work in progress however. The first genuine electric motor was produced as early as 1834. Today, state-of-the-art, innovative technologies are still based on discoveries made by researchers nearly 200 years ago, as illustrated by the examples of the fuel cell, electric motor and electric vehicle.

The electric vehicle

While electric motors and fuel cells were originally used in industrial machine applications, electric vehicles are the technology of the future. At the beginning of their development, electric motors were initially used in locomotives . At this point, the focus is on the development of roadworthy electric vehicles. The key drivers of modern research into the electric vehicle are the electric motor's high degree of efficiency and low CO2 output, two factors that are behind current efforts to combat energy resource and climate change issues. The major issue is energy storage , which is the why researches are focused primarily on this aspect. For this reason, hybrid model electric vehicles - the combination of electric and combustion motors - are still in their infancy stage.

Automotive Engineering

Automotive Engineering highlights issues related to automobile manufacturing - including vehicle parts and accessories - and the environmental impact and safety of automotive products, production facilities and manufacturing processes.

innovations-report offers stimulating reports and articles on a variety of topics ranging from automobile fuel cells, hybrid technologies, energy saving vehicles and carbon particle filters to engine and brake technologies, driving safety and assistance systems.

Latest News:

Page anfang | 1 | 2 | 3 | 4 | 5 | ende

Three Autonomous Mini Buses for Karlsruhe

Manufacturer Easymile was awarded the contract for the delivery of three electrically operated mini buses in the project EVA-Shuttle / Project consortium equips vehicles for autonomous operation in Karlsruhe / Test drives on the Test Area Autonomous Driving Baden-Württemberg starting at the beginning of 2020

The Karlsruhe project EVA-Shuttle reaches an important stage in the preparation for the tests of autonomous mini shuttles in public transport in the district...

14.05.2019 | nachricht Read more

A Jetsons future? Assessing the role of flying cars in sustainable mobility

In the 1960s animated sitcom The Jetsons, George Jetson commutes to work in his family-size flying car, which miraculously transforms into a briefcase at the end of the trip.

A new study of the environmental sustainability impacts of flying cars, formally known as electric vertical takeoff and landing aircraft, or VTOLs, finds that...

10.04.2019 | nachricht Read more

Solid state batteries for tomorrow's electric cars

As part of a strategic international cooperation program of the Fraunhofer-Gesellschaft, Empa in Dübendorf (CH) and the Fraunhofer Institute for Silicate Research ISC in Würzburg (D) launched a three-year joint research project at the beginning of January to create the basis for a produc-tion-ready next generation of traction batteries for electric cars. In contrast to lithium-ion cells currently in use, these will consist only of solids and will no longer contain flammable liquid electrolytes. The Fraunhofer ISC contributes its know-how in process development and battery cell production and produces the first prototypes.

The worldwide production of state-of-the-art lithium-ion battery cells is currently mainly controlled by Asian companies. If the European automotive industry...

22.02.2019 | nachricht Read more

The car of the future – sleeper cars and travelling offices too?

As part of a survey involving 2500 motorists in five major markets, management consultants Horváth & Partners worked together with the Fraunhofer IAO to determine respondents’ willingness to pay and desired interior configurations for self-driving vehicles. The results are summarized in the “Enabling the Value of Time” study.

Almost half of the motorists surveyed are looking forward to a completely new driving sensation: With the space normally occupied by the driver’s seat being...

18.06.2018 | nachricht Read more

Self-driving cars for country roads

Most autonomous vehicles require intricate hand-labeled maps, but MIT CSAIL's MapLite enables navigation with just GPS and sensors

Uber's recent self-driving car fatality underscores the fact that the technology is still not ready for widespread adoption. One reason is that there aren't...

07.05.2018 | nachricht Read more

When your car knows how you feel

FZI from January 9 to 12 at trade show CES / In Las Vegas, Karlsruhe researchers show system for camera-based recognition of vital parameters in vehicles

From January 9 to 12, the FZI Research Center for Information Technology will present a system for camera-based vital parameter recognition at the...

20.12.2017 | nachricht Read more

Did you know how many parts of your car require infrared heat?

A car should drive and look good. The car paint should shine, the windows must fit perfectly and especially the airbag has to function reliably. Infrared heat is responsible for a significant amount of these processes.

At least 200 parts of a car will benefit from infrared heat technology during its manufacturing process.

Drivers need a quiet cabin, a well-functioning heater for the winter or air-conditioning during the hot summer months, and - in case of an emergency - the...

23.10.2017 | nachricht Read more

Two intelligent vehicles are better than one

When EPFL researchers fused the data from two intelligent vehicles, the result was a wider field of view, extended situational awareness and greater safety

Intelligent vehicles get their intelligence from cameras, Light Detection and Ranging (LIDAR) sensors, and navigation and mapping systems. But there are ways...

04.10.2017 | nachricht Read more

The Future of Mobility: tomorrow’s ways of getting from A to B

Together, TÜV Rheinland, the Fraunhofer FIT and the start-up company MotionWerk are presenting a concept paper on the future of the mobility sector’s digital infrastructure. By way of their Open Mobility System (OMOS), they are offering a step by step solution to the challenges of our future mobility. The intention is to involve as many companies as possible in a mobility foundation that guarantees and promotes creative competition. At the heart of this process is an open, decentralized blockchain infrastructure.

The demands we place on unlimited individual mobility are already in transition. New mobility concepts such as Peer-2-Peer car sharing are indicative of a...

07.09.2017 | nachricht Read more

ShAPEing the future of magnesium car parts

New approach makes lightest automotive metal more economic, useful

Magnesium -- the lightest of all structural metals -- has a lot going for it in the quest to make ever lighter cars and trucks that go farther on a tank of...

23.08.2017 | nachricht Read more
Page anfang | 1 | 2 | 3 | 4 | 5 | ende

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fraunhofer IDMT demonstrates its method for acoustic quality inspection at »Sensor+Test 2019« in Nürnberg

From June 25th to 27th 2019, the Fraunhofer Institute for Digital Media Technology IDMT in Ilmenau (Germany) will be presenting a new solution for acoustic quality inspection allowing contact-free, non-destructive testing of manufactured parts and components. The method which has reached Technology Readiness Level 6 already, is currently being successfully tested in practical use together with a number of industrial partners.

Reducing machine downtime, manufacturing defects, and excessive scrap

Im Focus: Successfully Tested in Praxis: Bidirectional Sensor Technology Optimizes Laser Material Deposition

The quality of additively manufactured components depends not only on the manufacturing process, but also on the inline process control. The process control ensures a reliable coating process because it detects deviations from the target geometry immediately. At LASER World of PHOTONICS 2019, the Fraunhofer Institute for Laser Technology ILT will be demonstrating how well bi-directional sensor technology can already be used for Laser Material Deposition (LMD) in combination with commercial optics at booth A2.431.

Fraunhofer ILT has been developing optical sensor technology specifically for production measurement technology for around 10 years. In particular, its »bd-1«...

Im Focus: The hidden structure of the periodic system

The well-known representation of chemical elements is just one example of how objects can be arranged and classified

The periodic table of elements that most chemistry books depict is only one special case. This tabular overview of the chemical elements, which goes back to...

Im Focus: MPSD team discovers light-induced ferroelectricity in strontium titanate

Light can be used not only to measure materials’ properties, but also to change them. Especially interesting are those cases in which the function of a material can be modified, such as its ability to conduct electricity or to store information in its magnetic state. A team led by Andrea Cavalleri from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg used terahertz frequency light pulses to transform a non-ferroelectric material into a ferroelectric one.

Ferroelectricity is a state in which the constituent lattice “looks” in one specific direction, forming a macroscopic electrical polarisation. The ability to...

Im Focus: Determining the Earth’s gravity field more accurately than ever before

Researchers at TU Graz calculate the most accurate gravity field determination of the Earth using 1.16 billion satellite measurements. This yields valuable knowledge for climate research.

The Earth’s gravity fluctuates from place to place. Geodesists use this phenomenon to observe geodynamic and climatological processes. Using...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on UV LED Technologies & Applications – ICULTA 2020 | Call for Abstracts

24.06.2019 | Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

 
Latest News

Shell increases versatility of nanowires

26.06.2019 | Materials Sciences

Hubble finds tiny 'electric soccer balls' in space, helps solve interstellar mystery

26.06.2019 | Physics and Astronomy

New combination therapy established as safe and effective for prostate cancer

26.06.2019 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>