Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Materials sciences - an interdisciplinary research field

Materials sciences involves the research, development, characterization, manufacture and processing of materials.

Materials sciences- the basis

As an interdisciplinary field, materials sciences encompasseschemistry, physics, mineralogyand many other areas of science. As a result, it is also tied closely to copper, iron and steel.

The transition from natural materials such as stone, wood, ivory or leather to the targeted production of materials such as copper, steel or iron

.

Copper, steel and iron were produced as early as the Neolithic, roughly around 4,300 B.C. Copper and iron were produced as far back as the New Stone Age, roughly 4,300 B.C. This was then followed by the transition to the Bronze Age. It wasn't until the Iron Age that apart from iron, steel and copper, aluminum was also produced using the Hall-Héroult process. For a long time, materials sciences was interested almost exclusively in metals such as iron, copper and steel. However, this has changed with the rediscovery of concrete. While the first, mass-produced plastic materials eventually attracted the interest of the broad public, materials sciences continues to carry out research into iron, copper and steel.

The first metals and the ancient times

Copper, steel and iron were the first metals that mankind became familiar with as it evolved. Copper is very easy to process. As a result, copper was already being used 10,000 years ago by the oldest known cultures 10,000. The era of large-scale copper use (between 3,000 and 5,000 B.C.) is referred to as the Copper Age. The devotees of alchemy associate copper with Venus, the symbol of femininity. The first mirrors were even made from copper. The Roman Empire was the largest producer of copper prior to the Industrial Age. Copper remains an extremely popular material.

Steel - stable and dependable

Mankind has acquired long years of practical experience with steel. Steel is a preferred material in engineering because of its durability, excellent corrosion properties and suitability for welding. It is significantly more stable than copper. The European steel registry lists more than 2,300 types of steel. Coal and steel served as the pillars of heavy industry over a long period of time and were thus the foundations of political power. Steel is defined as an iron-carbon alloy with less than 2.06 percent carbon content. Steel, or iron, has a density of 7.85-7.87 g/cm3. Steel melts at a temperature that can be as high as 1,536°C and therefore withstands much higher temperatures than copper.Steel was first produced around 1,000 B.C., much later than copper. In an ecological sense, steel is a sustainable material because it can be continuously reused with minimal quality loss .

Iron - from decoration to general utility

The use of iron was first recorded around 4,000 B.C. in Egypt. It was a solid iron used for decorations and for making spear tips. It was more suitable for these purposes than steel or copper. Smelted iron appeared later in Mesopotamia and Egypt, but it was only intended for ceremonial purposes. Perhaps iron came about as a byproduct of bronze production. After the Hethiter developed a method to produce iron, cultures became increasingly reliant on iron between 1,600 and 1,200 B.C. Iron is thought to be a major element of the earth's core, along with nickel. Iron is produced by reducing iron ore through a chemical reaction with carbon. In contrast to steel or copper, iron is produced in blast furnaces.

Materials Sciences

Materials management deals with the research, development, manufacturing and processing of raw and industrial materials. Key aspects here are biological and medical issues, which play an increasingly important role in this field.

innovations-report offers in-depth articles related to the development and application of materials and the structure and properties of new materials.

Latest News:

Page anfang | 1 | 2 | 3 | 4 | 5 | ende

UO-industry collaboration points to improved nanomaterials

University of Oregon microscope puts spotlight on the surface structure of quantum dots for designing new solar devices

A potential path to identify imperfections and improve the quality of nanomaterials for use in next-generation solar cells has emerged from a collaboration of...

21.11.2014 | nachricht Read more

New Model Clarifies Photoexcited Thin-Film Lattice Dynamics

Comprehensive new study in the journal "Structural Dynamics" looking at thin films helps to make sense of physical and chemical properties of a wide range of materials

A research team from Germany developed an analytical model to describe the structural dynamics of photoexcited thin films and verified it by ultrafast X-ray...

19.11.2014 | nachricht Read more

Scientists get to the heart of fool's gold as a solar material

As the installation of photovoltaic solar cells continues to accelerate, scientists are looking for inexpensive materials beyond the traditional silicon that can efficiently convert sunlight into electricity.

Theoretically, iron pyrite -- a cheap compound that makes a common mineral known as fool's gold -- could do the job, but when it works at all, the conversion...

19.11.2014 | nachricht Read more

New form of crystalline order holds promise for thermoelectric applications

Since the 1850's scientists have known that crystalline materials are organized into fourteen different basic lattice structures. However, a team of researchers from Vanderbilt University and Oak Ridge National Laboratory (ORNL) now reports that it has discovered an entirely new form of crystalline order that simultaneously exhibits both crystal and polycrystalline properties, which they describe as "interlaced crystals."

Writing in the Nov. 14 issue of the journal Nature Communications, the researchers describe finding this unusual arrangement of atoms while studying...

17.11.2014 | nachricht Read more

Innovative reusable operating theatre clothing

Optimising protective operating theatre clothing in terms of comfort and durability enables significant amounts of waste to be avoided and valuable resources saved. Find out here whether you too could benefit from the improved market potential of reusable protective clothing.

More comfortable, more environmentally friendly

12.11.2014 | nachricht Read more

Drexel Engineers Improve Strength, Flexibility of Atom-Thick Films

Making a paper airplane in school used to mean trouble. Today it signals a promising discovery in materials science research that could help next-generation technology –like wearable energy storage devices- get off the ground.

Researchers at Drexel University and Dalian University of Technology in China have chemically engineered a new, electrically conductive nanomaterial that is...

12.11.2014 | nachricht Read more

New Materials Yield Record Efficiency Polymer Solar Cells

Researchers from North Carolina State University and Hong Kong University of Science and Technology have found that temperature-controlled aggregation in a family of new semi-conducting polymers is the key to creating highly efficient organic solar cells that can be mass produced more cheaply. Their findings also open the door to experimentation with different chemical mixtures that comprise the active layers of the cells.

Polymer solar cells are a delicately controlled mixture of a polymer donor and a fullerene acceptor. The cell is created by adding a solvent to the polymer and...

11.11.2014 | nachricht Read more

ORNL materials researchers get first look at atom-thin boundaries

Scientists at the Department of Energy’s Oak Ridge National Laboratory have made the first direct observations of a one-dimensional boundary separating two different, atom-thin materials, enabling studies of long-theorized phenomena at these interfaces.

Theorists have predicted the existence of intriguing properties at one-dimensional (1-D) boundaries between two crystalline components, but experimental...

11.11.2014 | nachricht Read more

Good Vibrations Give Electrons Excitations That Rock an Insulator to Go Metallic

In a vanadium dioxide crystal, shaking of lattice atoms unlocks electron flow

For more than 50 years, scientists have debated what turns particular oxide insulators, in which electrons barely move, into metals, in which electrons flow...

11.11.2014 | nachricht Read more

ORNL thermomagnetic processing method provides path to new materials

For much the same reason LCD televisions offer eye-popping performance, a thermomagnetic processing method developed at the Department of Energy’s Oak Ridge National Laboratory can advance the performance of polymers.

Polymers are used in cars, planes and hundreds of consumer products, and scientists have long been challenged to create polymers that are immune to...

07.11.2014 | nachricht Read more
Page anfang | 1 | 2 | 3 | 4 | 5 | ende

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Permafrost soil is possible source of abrupt rise in greenhouse gases at end of last ice age

Scientists from the Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research (AWI) have identified a possible source of carbon dioxide (CO2) and other greenhouse gases that were abruptly released to the atmosphere in large quantities around 14,600 years ago.

According to this new interpretation, the CO2 – released during the onset of the Bølling/Allerød warm period – presumably had their origin in thawing Arctic...

Im Focus: Small volcanic eruptions could be slowing global warming

Small volcanic eruptions might eject more of an atmosphere-cooling gas into Earth’s upper atmosphere than previously thought, potentially contributing to the recent slowdown in global warming, according to a new study.

Scientists have long known that volcanoes can cool the atmosphere, mainly by means of sulfur dioxide gas that eruptions expel. Droplets of sulfuric acid that...

Im Focus: Researchers discern the shapes of high-order Brownian motions

For the first time, scientists have vividly mapped the shapes and textures of high-order modes of Brownian motions--in this case, the collective macroscopic movement of molecules in microdisk resonators--researchers at Case Western Reserve University report.

The new technology holds promise for multimodal sensing and signal processing, and to develop optical coding for computing and other information-processing...

Im Focus: New form of crystalline order holds promise for thermoelectric applications

Since the 1850's scientists have known that crystalline materials are organized into fourteen different basic lattice structures. However, a team of researchers from Vanderbilt University and Oak Ridge National Laboratory (ORNL) now reports that it has discovered an entirely new form of crystalline order that simultaneously exhibits both crystal and polycrystalline properties, which they describe as "interlaced crystals."

Writing in the Nov. 14 issue of the journal Nature Communications, the researchers describe finding this unusual arrangement of atoms while studying...

Im Focus: A Piece of the Quantum Puzzle

UCSB physicists demonstrate the high level of controllability needed to explore ideas in quantum simulations

While the Martinis Lab at UC Santa Barbara has been focusing on quantum computation, former postdoctoral fellow Pedram Roushan and several colleagues have been...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Regional economic cooperation in Central Asia

21.11.2014 | Event News

Educating the Ecucators

13.11.2014 | Event News

36th Annual IATUL Conference 2015: Call for papers and posters

12.11.2014 | Event News

 
Latest News

Laser from a plane discovers Roman goldmines in Spain

21.11.2014 | Earth Sciences

Darwin 2.0

21.11.2014 | Life Sciences

Siemens Receives Power Island Order with H-class Turbine Technology in Ohio, U.S.A.

21.11.2014 | Press release

VideoLinks
B2B-VideoLinks
More VideoLinks >>>