Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Materials sciences - an interdisciplinary research field

Materials sciences involves the research, development, characterization, manufacture and processing of materials.

Materials sciences- the basis

As an interdisciplinary field, materials sciences encompasseschemistry, physics, mineralogyand many other areas of science. As a result, it is also tied closely to copper, iron and steel.

The transition from natural materials such as stone, wood, ivory or leather to the targeted production of materials such as copper, steel or iron

.

Copper, steel and iron were produced as early as the Neolithic, roughly around 4,300 B.C. Copper and iron were produced as far back as the New Stone Age, roughly 4,300 B.C. This was then followed by the transition to the Bronze Age. It wasn't until the Iron Age that apart from iron, steel and copper, aluminum was also produced using the Hall-Héroult process. For a long time, materials sciences was interested almost exclusively in metals such as iron, copper and steel. However, this has changed with the rediscovery of concrete. While the first, mass-produced plastic materials eventually attracted the interest of the broad public, materials sciences continues to carry out research into iron, copper and steel.

The first metals and the ancient times

Copper, steel and iron were the first metals that mankind became familiar with as it evolved. Copper is very easy to process. As a result, copper was already being used 10,000 years ago by the oldest known cultures 10,000. The era of large-scale copper use (between 3,000 and 5,000 B.C.) is referred to as the Copper Age. The devotees of alchemy associate copper with Venus, the symbol of femininity. The first mirrors were even made from copper. The Roman Empire was the largest producer of copper prior to the Industrial Age. Copper remains an extremely popular material.

Steel - stable and dependable

Mankind has acquired long years of practical experience with steel. Steel is a preferred material in engineering because of its durability, excellent corrosion properties and suitability for welding. It is significantly more stable than copper. The European steel registry lists more than 2,300 types of steel. Coal and steel served as the pillars of heavy industry over a long period of time and were thus the foundations of political power. Steel is defined as an iron-carbon alloy with less than 2.06 percent carbon content. Steel, or iron, has a density of 7.85-7.87 g/cm3. Steel melts at a temperature that can be as high as 1,536°C and therefore withstands much higher temperatures than copper.Steel was first produced around 1,000 B.C., much later than copper. In an ecological sense, steel is a sustainable material because it can be continuously reused with minimal quality loss .

Iron - from decoration to general utility

The use of iron was first recorded around 4,000 B.C. in Egypt. It was a solid iron used for decorations and for making spear tips. It was more suitable for these purposes than steel or copper. Smelted iron appeared later in Mesopotamia and Egypt, but it was only intended for ceremonial purposes. Perhaps iron came about as a byproduct of bronze production. After the Hethiter developed a method to produce iron, cultures became increasingly reliant on iron between 1,600 and 1,200 B.C. Iron is thought to be a major element of the earth's core, along with nickel. Iron is produced by reducing iron ore through a chemical reaction with carbon. In contrast to steel or copper, iron is produced in blast furnaces.

Materials Sciences

Materials management deals with the research, development, manufacturing and processing of raw and industrial materials. Key aspects here are biological and medical issues, which play an increasingly important role in this field.

innovations-report offers in-depth articles related to the development and application of materials and the structure and properties of new materials.

Latest News:

Page anfang | 1 | 2 | 3 | 4 | 5 | ende

ORNL Researchers Tune Friction in Ionic Solids at the Nanoscale

Friction impacts motion, hence the need to control friction forces. Currently, this is accomplished by mechanistic means or lubrication, but experiments conducted by researchers at the Department of Energy’s Oak Ridge National Laboratory have uncovered a way of controlling friction on ionic surfaces at the nanoscale using electrical stimulation and ambient water vapor.

The research, which demonstrates a new physical effect, was undertaken at the Center for Nanophase Materials Sciences, a DOE Office of Science User Facility at...

29.01.2015 | nachricht Read more

Making a tiny rainbow

By varying the size and spacing of aluminum nanodisks, researchers generate images that contain over 300 colors and are not much wider than a human hair

A scheme for greatly increasing the number of colors that can be produced by arrays of tiny aluminum nanodisks has been demonstrated by A*STAR scientists1.

29.01.2015 | nachricht Read more

How Ionic: Scaffolding Is in Charge of Calcium Carbonate Crystals

Proteins and carbohydrates may instigate crystallization by acting like a sponge to capture calcium ions

Nature packs away carbon in chalk, shells and rocks made by marine organisms that crystallize calcium carbonate. Now, research suggests that the soft, organic...

27.01.2015 | nachricht Read more

'Bulletproof' battery: Kevlar membrane for safer, thinner lithium rechargeables

New battery technology from the University of Michigan should be able to prevent the kind of fires that grounded Boeing 787 Dreamliners in 2013.

The innovation is an advanced barrier between the electrodes in a lithium-ion battery.

27.01.2015 | nachricht Read more

Improvements in Transistors Will Make Flexible Plastic Computers a Reality

Researchers at Japan’s National Institute for Materials Science revealed that improvements should soon be expected in the manufacture of transistors that can be used, for example, to make flexible, paper-thin computer screens.

The scientists reviewed the latest developments in research on photoactive organic field-effect transistors; devices that incorporate organic semi-conductors,...

26.01.2015 | nachricht Read more

Collagen: powerful workout with water

Collagen fibres not only passively support bone, tendons and ligaments, but also actively contract

The bodies of humans and animals owe their strength especially to a fibrous structural protein called collagen. Collagen is abundant in bones, tendons,...

23.01.2015 | nachricht Read more

Scientists 'bend' elastic waves with new metamaterials that could have commercial applications

Materials could benefit imaging and military enhancements such as elastic cloaking

Sound waves passing through the air, objects that break a body of water and cause ripples, or shockwaves from earthquakes all are considered "elastic" waves....

23.01.2015 | nachricht Read more

Self-Assembled Nanotextures Create Antireflective Surface on Silicon Solar Cells

Nanostructured surface textures-with shapes inspired by the structure of moths' eyes-prevent the reflection of light off silicon, improving conversion of sunlight to electricity

Reducing the amount of sunlight that bounces off the surface of solar cells helps maximize the conversion of the sun's rays to electricity, so manufacturers...

21.01.2015 | nachricht Read more

New Laser-Patterning Technique Turns Metals Into Supermaterials

Hierarchical nano- and microstructures transform sheets of platinum, titanium and brass into light absorbing, water repelling, self-cleaning superstars

By zapping ordinary metals with femtosecond laser pulses researchers from the University of Rochester in New York have created extraordinary new surfaces that...

21.01.2015 | nachricht Read more

Laser-Generated Surface Structures Create Extremely Water-Repellent Metals

Super-hydrophobic properties could lead to applications in solar panels, sanitation and as rust-free metals

Scientists at the University of Rochester have used lasers to transform metals into extremely water repellent, or super-hydrophobic, materials without the need...

21.01.2015 | nachricht Read more
Page anfang | 1 | 2 | 3 | 4 | 5 | ende

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanoscale Mirrored Cavities Amplify, Connect Quantum Memories

Advance could lead to quantum computing and the secure transfer of information over long-distance fiber optic networks

The idea of computing systems based on controlling atomic spins just got a boost from new research performed at the Massachusetts Institute of Technology (MIT)...

Im Focus: Shedding light on cold Higgs

For the first time physicists at the University of Stuttgart provide experimental proof of a stable and well-defined Higgs mode in superconductors – a direct analog to the Higgs particle, discovered only recently at the world´s largest particle accelerator, the Large Hadron Collider at the CERN – however, using not more than a table-top experiment.

When François Englert and Peter Higgs were awarded the 2013 Nobel Prize, a scientific breakthrough was honored that could hardly be more spectacular: born from...

Im Focus: Pictured together for the first time: A chemokine and its receptor

Researchers capture 3-D structure of a molecular interaction that influences cancer, inflammation and HIV infection

Researchers at University of California, San Diego Skaggs School of Pharmacy and Pharmaceutical Sciences and the Bridge Institute at the University of Southern...

Im Focus: Intelligent Algorithm Finds Available Carsharing Vehicles

A new program will make it easier to combine different modes of transport. Siemens is developing a service for predicting the availability of carsharing vehicles at a given location at specific times.

The forecasting tool will be incorporated into the integrated SiMobility Connect mobility platform, which links carsharing firms, public transport companies,...

Im Focus: New conductive coatings for flexible touchscreens – presentation at nano tech 2015 in Japan

Mobile phones and smart phones still haven‘t been adapted to the carrying habits of their users. That much is clear to anyone who has tried sitting down with a mobile phone in their back pocket: the displays of the innumerable phones and pods are rigid and do not yield to the anatomical forms adopted by the people carrying them. By now it is no longer any secret that the big players in the industry are working on flexible displays. Properties that suitable coatings offer in this respect will be demonstrated by the developments of the INM – Leibniz-Institute for New Materials on show nano tech 2015, Tokio, Japan.

For the nanoparticle inks, the researchers are using what are known as TCOs, or transparent conducting oxides. “We use the TCOs to produce nanoparticles with...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Better prospects through equal opportunity

26.01.2015 | Event News

2000 Erziehungswissenschaftler an der Uni Kassel erwartet

19.01.2015 | Event News

How are Europe’s landscapes influenced by the changing energy sector?

19.01.2015 | Event News

 
Latest News

Structure of world's largest single cell is reflected at the molecular level

30.01.2015 | Life Sciences

Presentation of the WorldRiskIndex with a special focus on Urban Areas in New York

30.01.2015 | Social Sciences

Picking up on the smell of evolution

30.01.2015 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>