Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Materials sciences - an interdisciplinary research field

Materials sciences involves the research, development, characterization, manufacture and processing of materials.

Materials sciences- the basis

As an interdisciplinary field, materials sciences encompasseschemistry, physics, mineralogyand many other areas of science. As a result, it is also tied closely to copper, iron and steel.

The transition from natural materials such as stone, wood, ivory or leather to the targeted production of materials such as copper, steel or iron


Copper, steel and iron were produced as early as the Neolithic, roughly around 4,300 B.C. Copper and iron were produced as far back as the New Stone Age, roughly 4,300 B.C. This was then followed by the transition to the Bronze Age. It wasn't until the Iron Age that apart from iron, steel and copper, aluminum was also produced using the Hall-Héroult process. For a long time, materials sciences was interested almost exclusively in metals such as iron, copper and steel. However, this has changed with the rediscovery of concrete. While the first, mass-produced plastic materials eventually attracted the interest of the broad public, materials sciences continues to carry out research into iron, copper and steel.

The first metals and the ancient times

Copper, steel and iron were the first metals that mankind became familiar with as it evolved. Copper is very easy to process. As a result, copper was already being used 10,000 years ago by the oldest known cultures 10,000. The era of large-scale copper use (between 3,000 and 5,000 B.C.) is referred to as the Copper Age. The devotees of alchemy associate copper with Venus, the symbol of femininity. The first mirrors were even made from copper. The Roman Empire was the largest producer of copper prior to the Industrial Age. Copper remains an extremely popular material.

Steel - stable and dependable

Mankind has acquired long years of practical experience with steel. Steel is a preferred material in engineering because of its durability, excellent corrosion properties and suitability for welding. It is significantly more stable than copper. The European steel registry lists more than 2,300 types of steel. Coal and steel served as the pillars of heavy industry over a long period of time and were thus the foundations of political power. Steel is defined as an iron-carbon alloy with less than 2.06 percent carbon content. Steel, or iron, has a density of 7.85-7.87 g/cm3. Steel melts at a temperature that can be as high as 1,536°C and therefore withstands much higher temperatures than copper.Steel was first produced around 1,000 B.C., much later than copper. In an ecological sense, steel is a sustainable material because it can be continuously reused with minimal quality loss .

Iron - from decoration to general utility

The use of iron was first recorded around 4,000 B.C. in Egypt. It was a solid iron used for decorations and for making spear tips. It was more suitable for these purposes than steel or copper. Smelted iron appeared later in Mesopotamia and Egypt, but it was only intended for ceremonial purposes. Perhaps iron came about as a byproduct of bronze production. After the Hethiter developed a method to produce iron, cultures became increasingly reliant on iron between 1,600 and 1,200 B.C. Iron is thought to be a major element of the earth's core, along with nickel. Iron is produced by reducing iron ore through a chemical reaction with carbon. In contrast to steel or copper, iron is produced in blast furnaces.

Materials Sciences

Materials management deals with the research, development, manufacturing and processing of raw and industrial materials. Key aspects here are biological and medical issues, which play an increasingly important role in this field.

innovations-report offers in-depth articles related to the development and application of materials and the structure and properties of new materials.

Latest News:

Page anfang | 1 | 2 | 3 | 4 | 5 | ende

The route to high temperature superconductivity goes through the flat land

Superconductors are marvellous materials that are able to transport electric current and energy without dissipation. For this reason, they are extremely useful for constructing magnets that can generate enormous magnetic fields without melting.

They have found important applications as essential components of the Large Hadron Collider particle accelerator at CERN, levitating trains, and the magnetic...

23.11.2015 | nachricht Read more

Quantum spin could create unstoppable, one-dimensional electron waves

New theory points the way forward to transform atom-thin materials into powerful conductors

In certain nanomaterials, electrons are able to race through custom-built roadways just one atom wide. To achieve excellent efficiency, these one-dimensional...

19.11.2015 | nachricht Read more

From nanocrystals to earthquakes, solid materials share similar failure characteristics

Apparently, size doesn't always matter. An extensive study by an interdisciplinary research group suggests that the deformation properties of nanocrystals are not much different from those of the Earth's crust.

"When solid materials such as nanocrystals, bulk metallic glasses, rocks, or granular materials are slowly deformed by compression or shear, they slip...

18.11.2015 | nachricht Read more

A new symmetry underlies the search for new materials

A new symmetry operation developed by Penn State researchers has the potential to speed up the search for new advanced materials that range from tougher steels to new types of electronic, magnetic, and thermal materials. With further developments, this technique could also impact the field of computational materials design.

"In the physical sciences, making measurements can be time consuming and so you don't want to make unnecessary ones," said Venkat Gopalan, professor of...

18.11.2015 | nachricht Read more

New nanoscopic tools to study ligand-binding of receptors and quantifying two ligand-binding sites while imaging membrane receptors

Signalling processes in organisms are governed by specific extracellular and intracellular interactions and involve hundreds of different functionally highly versatile receptors situated in cell membranes.

For scientists wishing to understand signalling processes the situation is made more complex by the receptors not only being unevenly distributed and often...

17.11.2015 | nachricht Read more

High Durability and Efficiency of 1 cm2 Size Perovskite Solar Cells

A research group led by National Institute for Materials Science, Japan, improved the power conversion efficiency of perovskite solar cells to over 16% while employing cells that were greater than 1 cm2.

The cells have passed 1,000 Hours of Light Soaking (AM 1.5G, 100 mW/cm2) test, which is considered to be a basic criterion for practical use. These...

16.11.2015 | nachricht Read more

Strong odour challenge of mercaptans

Abstract: Pd/NHC Catalytic system, developed in the Ananikov laboratory, targeted on alternative technology of chemical utilization of organic sulfur species from crude oil (DOI: 10.1021/acscatal.5b01815).

Mercaptans or thiols are a special class of organic compounds that contains sulfur functional group, RSH. Various sulfur compounds are highly demanded in the...

13.11.2015 | nachricht Read more

New class of materials for organic electronics

Joint project details charge transport in polymeric carbon nitride for first time

Polymeric carbon nitrides are organic compounds synthesised to form a yellow powder of a myriad of nanocrystals. The crystalline structure resembles that of...

12.11.2015 | nachricht Read more

New technology colors in the infrared rainbow

Perfect absorbers capture specific wavelengths from the visible to the infrared spectrums

Researchers have devised a technology that can bring true color to infrared imaging systems, like the one used to track Arnold Schwarzenegger through the...

10.11.2015 | nachricht Read more

New electron microscopy method sculpts 3-D structures at atomic level

Electron microscopy researchers at the Department of Energy's Oak Ridge National Laboratory have developed a unique way to build 3-D structures with finely controlled shapes as small as one to two billionths of a meter.

The ORNL study published in the journal Small demonstrates how scanning transmission electron microscopes, normally used as imaging tools, are also capable of...

10.11.2015 | nachricht Read more
Page anfang | 1 | 2 | 3 | 4 | 5 | ende

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Lactate for Brain Energy

Nerve cells cover their high energy demand with glucose and lactate. Scientists of the University of Zurich now provide new support for this. They show for the first time in the intact mouse brain evidence for an exchange of lactate between different brain cells. With this study they were able to confirm a 20-year old hypothesis.

In comparison to other organs, the human brain has the highest energy requirements. The supply of energy for nerve cells and the particular role of lactic acid...

Im Focus: Laser process simulation available as app for first time

In laser material processing, the simulation of processes has made great strides over the past few years. Today, the software can predict relatively well what will happen on the workpiece. Unfortunately, it is also highly complex and requires a lot of computing time. Thanks to clever simplification, experts from Fraunhofer ILT are now able to offer the first-ever simulation software that calculates processes in real time and also runs on tablet computers and smartphones. The fast software enables users to do without expensive experiments and to find optimum process parameters even more effectively.

Before now, the reliable simulation of laser processes was a job for experts. Armed with sophisticated software packages and after many hours on computer...

Im Focus: Quantum Simulation: A Better Understanding of Magnetism

Heidelberg physicists use ultracold atoms to imitate the behaviour of electrons in a solid

Researchers at Heidelberg University have devised a new way to study the phenomenon of magnetism. Using ultracold atoms at near absolute zero, they prepared a...

Im Focus: Climate Change: Warm water is mixing up life in the Arctic

AWI researchers’ unique 15-year observation series reveals how sensitive marine ecosystems in polar regions are to change

The warming of arctic waters in the wake of climate change is likely to produce radical changes in the marine habitats of the High North. This is indicated by...

Im Focus: Nanocarriers may carry new hope for brain cancer therapy

Berkeley Lab researchers develop nanoparticles that can carry therapeutics across the brain blood barrier

Glioblastoma multiforme, a cancer of the brain also known as "octopus tumors" because of the manner in which the cancer cells extend their tendrils into...

All Focus news of the innovation-report >>>



Event News

Gluten oder nicht Gluten? Überempfindlichkeit auf Weizen kann unterschiedliche Ursachen haben

17.11.2015 | Event News

Art Collection Deutsche Börse zeigt Ausstellung „Traces of Disorder“

21.10.2015 | Event News

Siemens Healthcare introduces the Cios family of mobile C-arms

20.10.2015 | Event News

Latest News

Plant Defense as a Biotech Tool

25.11.2015 | Life Sciences

“move“ – on course for the mobility of the future

25.11.2015 | Power and Electrical Engineering

Understanding a missing link in how antidepressants work

25.11.2015 | Life Sciences

More VideoLinks >>>