Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Water vapor on dwarf planet Ceres

10.12.2015

The Occator crater on the surface is active - data from NASA’s Dawn mission indicate frozen water sublimating from its center

When the Sun shines into the Occator crater on the surface of the dwarf planet Ceres, a kind of thin haze appears above its brightest spot. This can be seen in images taken by the camera system aboard NASA’s Dawn space probe, which researchers under the lead of the Max Planck Institute for Solar System Research will publish on 9 December, 2015 in Nature magazine.


This representation of the Occator crater in false colours shows the differences in the surface composition. Red corresponds to a wavelength range around 0.97 micrometres (near infrared), green to a wavelength range around 0.75 micrometres (red, visible light) and blue to a wavelength range of around 0.44 micrometres (blue, visible light). These images were taken with the aid of the camera system aboard NASA’s Dawn space probe from a distance of 4425 kilometres.

© NASA/JPL-Caltech/UCLA/MPS/DLR/IDA


Mosaic of the surface: Most of the 130 bright spots (shown in red here) on the dwarf planet Ceres are associated with craters, as this image shows. Three zooms provide a closer look at these regions. Top left: A kind of haze appears above the Occator crater when the Sun shines in. Therefore, this could indicate that the crater contains frozen water. Top right: The Oxo crater is the second brightest structure on Ceres. A kind of haze can be found there as well. Bottom: A typical crater without water. The bright colour originates from mineral salts which could have dried up over time.

© NASA/JPL-Caltech/UCLA/MPS/DLR/IDA

The haze indicates that frozen water may exist on the surface there. The bright spots in the Occator crater are additionally composed of magnesium sulphates, a class of mineral salts. Many of the other bright areas on Ceres’ surface most likely by now consist solely of dried mineral salts. The new results show that since the birth of the Solar System frozen water has been able to survive not only in its furthest reaches, but also in the comparatively close asteroid belt.

An invisible border runs between the rocky planets of the inner Solar System and the gaseous giants further out. Around 4.5 billion years ago, water and other volatile substances evaporated from the regions close to the Sun leaving behind the inner planets Mercury, Venus, Earth and Mars as dry, rocky worlds. Only very far from the Sun could these substances survive.

They exist until today in the gas planets and their icy moons. Even the water on Earth is a more recent migrant from this distant region. But where exactly is this “ice line” located today, and where was it in the past? Where in the Solar System has frozen water been able to survive?

NASA’s Dawn space probe is looking for answers to these questions in the asteroid belt – a region between the orbits of Mars and Jupiter that is populated by countless asteroids, some bigger, some smaller in size. At the beginning of this year, during the approach phase to Ceres, bright spots on the surface of this largest occupant of the asteroid belt were already firing the imagination of scientists and laypersons alike.

Was it exposed ice? Or did salts give the bright spots their high reflectivity? “We are currently probably seeing remnants of an evaporation process exhibiting different stages in different locations. Perhaps we are witnessing the last phase of a formerly more active period”, says Andreas Nathues from the Max Planck Institute for Solar System Research in Göttingen, lead investigator of the camera team and first author of the study which will be published in Nature.

The light reflected into space by the all in all more than 130 bright spots differs greatly from that of other regions; it contains a higher proportion of blue, for example. This is shown by evaluations of the camera data taken with the aid of different colour filters. “Comparisons with a large variety of materials which we examined in the laboratory indicate that among other materials hydrated magnesium sulphates are to be found there,” explains second author Martin Hoffmann, scientist from the Max Planck Institute. These minerals also occur on Earth – sometimes at the rim of salt lakes.

The Occator crater has another noticeable feature. The central spot in the innermost part of the crater is much brighter than the other bright regions on the surface. It is located in a kind of “crater within a crater” measuring ten kilometres in diameter and half a kilometre deep. “On some of our images, it is also possible to recognize a diffuse haze above the crater bottom,” says Nathues.

The haze occurs in a daily cycle whenever sunlight reaches the crater bottom. “Ice possibly evaporates from there and entrains small particles,” the researcher continues. The process resembles the outgassing of comets, but is currently proceeding at a rather leisurely pace and with no eruptions.

Indications of frozen water on Ceres have been known for some time. The density of the spherical body is too low for a purely rocky-metal interior, for example. At the beginning of last year, researchers in Michael Küppers’ team at the European Space Agency (ESA) discovered indications for water vapour close to Ceres using the Herschel space telescope. In contrast to the new measurements, the gas was not spatially resolved, but its presence indicated by an absorption line in the light spectrum.

Dawn is now providing a more detailed look at Ceres. The measurements which have just been published originated partly from a distance of around 1470 kilometres – a mere stone’s throw on the cosmic scale. “The salts that appear on the surface of Ceres are strongly localized,” says Martin Hoffmann. They almost always occur in or near craters both big and small. The Occator crater which may contain ice is a particularly young example. The sharp-edged crater rim and the few impacts at the bottom of the crater indicate that it was formed only around 78 million years ago.

The second brightest structure on Ceres’ surface, the Oxo crater, which did not have a name until a few weeks ago and was therefore called “Feature A” in the study, is comparatively young as well and could also contain ice.

“The most plausible interpretation of our results is that there is a mixture of ice and salts under at least some parts of Ceres’ surface,” says Andreas Nathues. This material could be exposed by the impacts of medium-sized asteroids. The ice gradually evaporates until only salts and phyllosilicates are left.

“Our results show that subsurface ice was also able to survive in the asteroid belt, which is comparatively close to the Sun,” says Nathues. “The rocky surface layer protects it from the effects of the Sun.” The distance between our Sun and the dwarf planet Ceres is only around 414 million kilometres. Jupiter, whose icy moons emit water, is nearly twice as far away; and the comets which are rich in water spend most of their life even further away at the edge of the Solar System.

However, it is possible that Ceres is not the only ice reservoir in our planetary system that is close to the Sun. Spectral observations of the large asteroid Pallas, which orbits the Sun at a distance comparable to that of Ceres, suggest that the surfaces of both bodies have a similar composition.

The Dawn space probe began its journey into the asteroid belt, which is located between the orbits of Mars and Jupiter, in September 2007. In 2011, the probe arrived at the Vesta asteroid and accompanied it for more than a year. On 6 March 2015, Dawn was caught into an orbit around the dwarf planet Ceres and has been gradually advancing to lower and lower orbits ever since. It will probably reach the lowest orbit in the middle of December and maintain it until at least June of next year. Dawn will then be a mere 375 kilometers above Ceres’ surface.

The mission to Vesta and Ceres is managed by the Jet Propulsion Laboratory for NASA's Science Mission Directorate in Washington. Dawn is a project of the directorate's Discovery Program, managed by NASA's Marshall Space Flight Center in Huntsville, Alabama. UCLA is responsible for overall Dawn mission science. Orbital ATK, Inc., of Dulles, Virginia, designed and built the spacecraft. JPL is managed for NASA by the California Institute of Technology in Pasadena. The framing cameras were provided by the Max Planck Institute for Solar System Research, Gottingen, Germany, with significant contributions by the German Aerospace Center (DLR) Institute of Planetary Research, Berlin, and in coordination with the Institute of Computer and Communication Network Engineering, Braunschweig. The framing camera project is funded by the Max Planck Society, DLR, and NASA.


Contact

Dr. Andreas Nathues
Max Planck Institute for Solar System Research, Göttingen
Phone: +49 551 384979-433

Email: nathues@mps.mpg.de


Dr. Martin Hoffmann
Max Planck Institute for Solar System Research, Göttingen
Phone: +49 551 384979-308

Email: Hoffmann@mps.mpg.de


Dr. Birgit Krummheuer
Press Officer

Max Planck Institute for Solar System Research, Göttingen
Phone: +49 551 384979-462

Fax: +49 551 384979-240

Email: Krummheuer@mps.mpg.de


Original publication
Andreas Nathues et al.

Sublimation in bright spots on (1) Ceres

Nature, 9 December 2015

Dr. Andreas Nathues | Max Planck Institute for Solar System Research, Göttingen
Further information:
https://www.mpg.de/9786196/dawn-ceres-vapor

More articles from Physics and Astronomy:

nachricht Study offers new theoretical approach to describing non-equilibrium phase transitions
27.04.2017 | DOE/Argonne National Laboratory

nachricht SwRI-led team discovers lull in Mars' giant impact history
26.04.2017 | Southwest Research Institute

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>