Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UTSA-led team finds black hole affecting galactic climate

06.01.2016

Researchers used NASA's Chandra X-Ray Observatory, launched and deployed in 1999 by Space Shuttle Columbia

A team of researchers led by Eric Schlegel, Vaughn Family Endowed Professor in Physics at The University of Texas at San Antonio (UTSA), has discovered a powerful galactic blast produced by a giant black hole about 26 million light years from Earth. The black hole is the nearest supermassive black hole to Earth that is currently undergoing such violent outbursts.


Spiral galaxy NGC 5195 and the X-ray arcs Schlegel's team identified.

Credit: Eric Schlegel, the University of Texas at San Antonio

Schlegel's team used NASA's Earth-orbiting Chandra X-ray Observatory to find the black hole blast in the famous Messier 51 system of galaxies. The system contains a large spiral galaxy, NGC 5194, colliding with a smaller companion galaxy, NGC 5195.

"Just as powerful storms here on Earth impact their environments, so too do the ones we see out in space," Schlegel said. "This black hole is blasting hot gas and particles into its surroundings that must play an important role in the evolution of the galaxy."

Schlegel and his colleagues detected two X-ray emission arcs close to the center of NGC 5195, where the supermassive black hole is located.

"We think these arcs represent artifacts from two enormous gusts when the black hole expelled material outward into the galaxy," said co-author Christine Jones, astrophysicist and lecturer at the Harvard-Smithsonian Center for Astrophysics (CfA). "We think this activity has had a big effect on the galactic landscape."

Just beyond the outer arc, the researchers detected a slender region of hydrogen gas emission, suggesting that X-ray emitting gas displaced the hydrogen gas from the center of the galaxy.

Moreover, the properties of the gas around the arcs suggest that the outer arc has swept up enough material to trigger the formation of new stars. This type of phenomenon, where a black hole affects its host galaxy, is called "feedback."

"We think that feedback keeps galaxies from becoming too large," said co-author Marie Machacek, astrophysicist at CfA. "But at the same time, it can be responsible for how some stars form, showing that black holes can be creative, not just destructive."

The astronomers believe the black hole's outbursts may have been triggered by the interaction of NGC 5195 with its larger companion, NGC 5194, causing gas to be funneled toward the black hole. The team estimates that it took about one to three million years for the inner arc to reach its current position, and three to six million years for the outer arc.

"The black hole's behavior may be a local example of events that commonly took place when the universe was much younger. That makes this observation potentially very important," Schlegel said.

The researchers presented their findings today at the 227th meeting of the American Astronomical Society meeting in Kissimmee, Fla. They have also described their work in a paper submitted to The Astrophysical Journal.

###

NASA's Marshall Space Flight Center in Huntsville, Alabama, manages the Chandra program for NASA's Science Mission Directorate in Washington. The Smithsonian Astrophysical Observatory in Cambridge, Massachusetts, controls Chandra's science and flight operations.

UTSA physics alumna Laura Vega '14 contributed to the research. She is currently a graduate student in the Fisk-Vanderbilt University physics program.

Media Contact

Joanna Carver
joanna.carver@utsa.edu
210-243-4557

 @utsa

http://www.utsa.edu 

Joanna Carver | EurekAlert!

More articles from Physics and Astronomy:

nachricht Climate cycles may explain how running water carved Mars' surface features
02.12.2016 | Penn State

nachricht What do Netflix, Google and planetary systems have in common?
02.12.2016 | University of Toronto

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>