Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Untangling unknown structures in the mix


A combination of X-ray diffraction and computational techniques can determine unknown crystal structures in powder mixtures

The characterization of individual components in an unknown crystalline powder mixture is a challenge that has eluded scientists for many years. Now, A*STAR researchers have for the first time invented a methodology to accurately determine the crystal structures present in such mixtures1.

A new method that combines X-ray diffraction with computational analysis can be used to measure mixtures of unknown solids and identify their individual components.

© 2014 A*STAR Institute of Chemical and Engineering Sciences

Powder X-ray diffraction (PXRD) is a powerful tool used to determine the structure of crystalline solids. Every solid has its own unique crystal structure which, when hit by X-rays, produces a unique diffraction pattern — a ‘fingerprint’ from which the solid can then be identified and characterized through computational analysis.

However, traditional PXRD works best with pure single-component powders; mixed powders of unknown solids are far more difficult to analyze because the diffraction patterns overlap and are difficult to separate. Another complication is that individual solids can produce slightly different diffraction patterns depending on how the crystals are shaped and orientated in the powder samples.

Marc Garland and co-workers at the A*STAR Institute of Chemical and Engineering Sciences in Singapore have developed a new methodology, the PXRD-BTEM-Rietveld method, which combines two existing techniques to determine the individual crystal structures in a powder mixture.

“Many analytical problems in the chemical sciences involve mixtures of unknown solids,” explains Garland. “The extension of PXRD analysis to these mixtures opens up a myriad of new possibilities for the experimentalist because a purified single-component sample is no longer needed.”

First, Garland and his team used PXRD to obtain diffraction datasets from pre-prepared mixtures of several different powders. They then used their own algorithm, called band-target entropy minimization (BTEM), to sift through the entire dataset, looking for the simplest underlying patterns and to untangle overlapping diffraction patterns.

“BTEM is a blind separation technique,” explains Garland. “By searching for the simplest patterns — those with the smoothest profiles and the least signal disorder — we obtain accurate estimates of each pure component’s diffraction pattern.”

Garland and his team then used computational structure determination, including so-called Rietveld refinement, to obtain the crystal structures for each solid. This allowed the researchers to characterize the unknown components in the mixtures.

“One example of an application for our new technique could be investigating polymorphism in pharmaceuticals,” says Garland. “Each polymorphic pharmaceutical solid has a unique diffraction pattern resulting from its crystal structure, and it is incredibly important to the pharmaceutical industry to identify these from mixtures.”

The researchers plan to further refine their methodology, and hope to eliminate the problem of measuring irregularities due to crystal orientation.

Schreyer, M., Guo, L., Thirunahari, S., Gao, F. & Garland, M. Simultaneous determination of several crystal structures from powder mixtures: The combination of powder X-ray diffraction, band-target entropy minimization and Rietveld methods. Journal of Applied Crystallography 47, 659–667 (2014).

Associated links
A*STAR article

A*STAR Research | ResearchSEA
Further information:

More articles from Physics and Astronomy:

nachricht Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1
21.03.2018 | Fraunhofer-Institut für Hochfrequenzphysik und Radartechnik FHR

nachricht Taming chaos: Calculating probability in complex systems
21.03.2018 | American Institute of Physics

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

Modular safety concept increases flexibility in plant conversion

22.03.2018 | Trade Fair News

New interactive map shows climate change everywhere in world

22.03.2018 | Earth Sciences

New technologies and computing power to help strengthen population data

22.03.2018 | Earth Sciences

Science & Research
Overview of more VideoLinks >>>