Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Untangling unknown structures in the mix

06.11.2014

A combination of X-ray diffraction and computational techniques can determine unknown crystal structures in powder mixtures

The characterization of individual components in an unknown crystalline powder mixture is a challenge that has eluded scientists for many years. Now, A*STAR researchers have for the first time invented a methodology to accurately determine the crystal structures present in such mixtures1.


A new method that combines X-ray diffraction with computational analysis can be used to measure mixtures of unknown solids and identify their individual components.

© 2014 A*STAR Institute of Chemical and Engineering Sciences

Powder X-ray diffraction (PXRD) is a powerful tool used to determine the structure of crystalline solids. Every solid has its own unique crystal structure which, when hit by X-rays, produces a unique diffraction pattern — a ‘fingerprint’ from which the solid can then be identified and characterized through computational analysis.

However, traditional PXRD works best with pure single-component powders; mixed powders of unknown solids are far more difficult to analyze because the diffraction patterns overlap and are difficult to separate. Another complication is that individual solids can produce slightly different diffraction patterns depending on how the crystals are shaped and orientated in the powder samples.

Marc Garland and co-workers at the A*STAR Institute of Chemical and Engineering Sciences in Singapore have developed a new methodology, the PXRD-BTEM-Rietveld method, which combines two existing techniques to determine the individual crystal structures in a powder mixture.

“Many analytical problems in the chemical sciences involve mixtures of unknown solids,” explains Garland. “The extension of PXRD analysis to these mixtures opens up a myriad of new possibilities for the experimentalist because a purified single-component sample is no longer needed.”

First, Garland and his team used PXRD to obtain diffraction datasets from pre-prepared mixtures of several different powders. They then used their own algorithm, called band-target entropy minimization (BTEM), to sift through the entire dataset, looking for the simplest underlying patterns and to untangle overlapping diffraction patterns.

“BTEM is a blind separation technique,” explains Garland. “By searching for the simplest patterns — those with the smoothest profiles and the least signal disorder — we obtain accurate estimates of each pure component’s diffraction pattern.”

Garland and his team then used computational structure determination, including so-called Rietveld refinement, to obtain the crystal structures for each solid. This allowed the researchers to characterize the unknown components in the mixtures.

“One example of an application for our new technique could be investigating polymorphism in pharmaceuticals,” says Garland. “Each polymorphic pharmaceutical solid has a unique diffraction pattern resulting from its crystal structure, and it is incredibly important to the pharmaceutical industry to identify these from mixtures.”

The researchers plan to further refine their methodology, and hope to eliminate the problem of measuring irregularities due to crystal orientation.

Reference
Schreyer, M., Guo, L., Thirunahari, S., Gao, F. & Garland, M. Simultaneous determination of several crystal structures from powder mixtures: The combination of powder X-ray diffraction, band-target entropy minimization and Rietveld methods. Journal of Applied Crystallography 47, 659–667 (2014).

Associated links
A*STAR article

A*STAR Research | ResearchSEA
Further information:
http://www.researchsea.com

More articles from Physics and Astronomy:

nachricht Physics boosts artificial intelligence methods
19.10.2017 | California Institute of Technology

nachricht NASA team finds noxious ice cloud on saturn's moon titan
19.10.2017 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Electrode materials from the microwave oven

19.10.2017 | Materials Sciences

New material for digital memories of the future

19.10.2017 | Materials Sciences

Physics boosts artificial intelligence methods

19.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>