Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UMD physicist improves method for designing fusion experiments

13.02.2017

Established method for shaping stellarator magnets receives critical update

"Measure twice, cut once" is an old carpenter's proverb--a reminder that careful planning can save time and materials in the long run.


Fusion experiments known as stellarators work by confining a mass of superheated plasma (orange horizontal mass) inside a magnetic field generated by external electromagnetic coils (multicolored vertical bands). A UMD physicist has made a revision to the software tools used to design these complex coil shapes, allowing researchers to create better designs with more room between the coils for repairs and instrumentation. The solid lines denote shapes made by the old software, while the dotted lines denote shapes made by the new software.

Credit: Matt Landreman

The concept also applies to the design of stellarators, which are complex nuclear fusion experiments meant to explore fusion's potential as an energy source. Stellarators work by confining a ring of blazing-hot plasma inside a precisely shaped magnetic field generated by external electromagnetic coils. When the plasma gets to several million degrees--as hot as the interior of the sun--atomic nuclei begin to fuse together, releasing massive amounts of energy.

Before turning a single bolt to build one of these rare and expensive devices, engineers create exacting plans using a series of algorithms. However, a wide variety of coil shapes can all generate the same magnetic field, adding levels of complexity to the design process. Until now, few researchers have studied how to choose the best among all potential coil shapes for a specific stellarator.

University of Maryland physicist Matt Landreman has made an important revision to one of the most common software tools used to design stellarators. The new method is better at balancing tradeoffs between the ideal magnetic field shape and potential coil shapes, resulting in designs with more space between the coils. This extra space allows better access for repairs and more places to install sensors. Landreman's new method is described in a paper published February 13, 2017 in the journal Nuclear Fusion.

"Instead of optimizing only the magnetic field shape, this new method considers the complexity of the coil shapes simultaneously. So there is a bit of a tradeoff," said Landreman, an assistant research scientist at the UMD Institute for Research in Electronics and Applied Physics (IREAP) and sole author of the research paper. "It's a bit like buying a car. You might want the cheapest car, but you also want the safest car. Both features can be at odds with each other, so you have to find a way to meet in the middle."

Researchers used the previous method, called the Neumann Solver for Fields Produced by External Coils (NESCOIL) and first described in 1987, to design many of the stellarators in operation today--including the Wendelstein 7-X (W7-X). The largest stellarator in existence, W7-X began operation in 2015 at the Max Planck Institute of Plasma Physics in Germany.

"Most designs, including W7-X, started with a specifically shaped magnetic field to confine the plasma well. Then the designers shaped the coils to create this magnetic field," Landreman explained. "But this method typically required a lot of trial-and-error with the coil design tools to avoid coils coming too close together, making them infeasible to build, or leaving too little space to access the plasma chamber for maintenance."

Landreman's new method, which he calls Regularized NESCOIL--or REGCOIL for short--gets around this by tackling the coil spacing issue of stellarator design in tandem with the shaping of the magnetic field itself. The result, Landreman said, is a fast, more robust process that yields better coil shapes on the first try.

Modeling tests performed by Landreman suggest that the designs produced by REGCOIL confine hot plasma in a desirable shape, while significantly increasing the minimum distances between coils.

"In mathematics, we'd call stellarator coil design an 'ill-posed problem,' meaning there are a lot of potential solutions. Finding the best solution is highly dependent on posing the problem in the right way," Landreman said. "REGCOIL does exactly that by simplifying coil shapes in a way that the problem can be solved very efficiently."

The development of nuclear fusion as a viable energy source remains far off into the future. But innovations such as Landreman's new method will help bring down the cost and time investments needed to build new stellarators for research and--eventually--practical, energy-generating applications.

"This field is still in the basic research stage, and every new design is totally unique," Landreman said. "With these incompatible features to balance, there will always be different points where you can decide to strike a compromise. The REGCOIL method allows engineers to examine and model many different points along this spectrum."

###

The research paper, "An improved current potential method for fast computation of stellarator coil shapes," Matt Landreman, was published February 13, 2017 in the journal Nuclear Fusion.

This work was supported by the United States Department of Energy (Award Nos. DE-FG02-93ER54197 and DE-AC02-05CH11231). The content of this article does not necessarily reflect the views of this organization.

Media Relations Contact: Matthew Wright, 301-405-9267, mewright@umd.edu

University of Maryland
College of Computer, Mathematical, and Natural Sciences
2300 Symons Hall
College Park, MD 20742
http://www.cmns.umd.edu
@UMDscience

About the College of Computer, Mathematical, and Natural Sciences

The College of Computer, Mathematical, and Natural Sciences at the University of Maryland educates more than 7,000 future scientific leaders in its undergraduate and graduate programs each year. The college's 10 departments and more than a dozen interdisciplinary research centers foster scientific discovery with annual sponsored research funding exceeding $150 million.

Media Contact

Matthew Wright
mewright@umd.edu
301-405-9267

 @UMDRightNow

http://www.umdrightnow.umd.edu/ 

Matthew Wright | EurekAlert!

More articles from Physics and Astronomy:

nachricht Writing and deleting magnets with lasers
19.04.2018 | Helmholtz-Zentrum Dresden-Rossendorf

nachricht Ultrafast electron oscillation and dephasing monitored by attosecond light source
19.04.2018 | Yokohama National University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Scientists re-create brain neurons to study obesity and personalize treatment

20.04.2018 | Health and Medicine

Spider silk key to new bone-fixing composite

20.04.2018 | Materials Sciences

Clear as mud: Desiccation cracks help reveal the shape of water on Mars

20.04.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>