Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ultrafast imaging of complex systems in 3-D at near atomic resolution becoming increasingly possible

18.12.2014

It is becoming possible to image complex systems in 3-D with near-atomic resolution on ultrafast timescales using extremely intense X-ray free-electron laser (XFEL) pulses.

One important step toward ultrafast imaging of samples with a single X-ray shot is understanding the interaction of extremely brilliant and intense X-ray pulses with the sample, including ionization rates.

Scientists from the U.S. Department of Energy's Argonne National Laboratory and SLAC National Accelerator Laboratory developed an extended Monte Carlo computational scheme that for the first time includes bound-bound resonant excitations that dramatically enhance ionization rates and can lead to an unexpectedly high degree of electron stripping.

The extended computation scheme addresses a daunting challenge for the standard rate equation approach – managing the exponentially large number of electron configurations that can occur when one or more excitations occur. The scheme computes atomic data only on demand, that is, when a specific electronic configuration is accessed.

"This strategy allows for a natural and efficient way to identify the most probable path through the quadrillions of electronic configurations to the final state," Argonne Distinguished Fellow Linda Young said.

With the extended Monte Carlo rate equation (MCRE) model, the researchers studied the ionization dynamics of argon atoms that received a 480-electronvolt XFEL pulse, in which the resonance-enhanced X-ray multiple ionization mechanism was critical to generating otherwise inaccessible charge states.

“Based on the computer simulations, we can now understand the very efficient ionization of our samples beyond what was previously believed to be the physical limit,” said Christoph Bostedt, a senior staff scientist at SLAC. “Understanding the process gives you the means to control it.”

XFEL imaging capability relies on the diffract-before-destroy concept, in which a high-fluence, ultrashort X-ray pulse generates a diffraction pattern prior to Coulomb explosion; reconstruction of many such patterns will render a 3-D model.

Due to the massive number of electronic rearrangements – ranging into the billions and beyond – during the femtosecond X-ray pulse, it is important to gain a deep understanding of the dynamic response individual atoms have to intense X-ray pulses.

With the extended MCRE approach scientists not only gained the first theoretical verification of resonance-enhanced multiple ionization (REXMI) pathways for inner-shell ionization dynamics of argon atoms, but also verified the REXMI mechanism for previously observed ultra-efficient ionization in krypton and xenon.  The extended MCRE scheme makes possible the theoretical exploration of resonant high-intensity X-ray physics.

Hard XFEL pluses, such as those available at SLAC’s Linac Coherent Light Source (LCLS) where this experiment was conducted, provide unparalleled opportunities to characterize, down to the atomic level, complex systems on ultrafast time scales.

This research was funded by the U.S Department of Energy's Office of Science, Office of Basic Energy Sciences. The LCLS is a DOE Office of Science User Facility.

Phay Ho and Linda Young of Argonne and Christoph Bostedt and Sebastian Schorb of SLAC developed the extended Monte Carlo rate equation approach.

Also see "Theoretical Tracking of Resonance-Enhanced Multiple Ionization Pathways in X-Ray Free-Electron Laser Pulses" at the Physical Review Letters website.

Argonne National Laboratory seeks solutions to pressing national problems in science and technology. The nation's first national laboratory, Argonne conducts leading-edge basic and applied scientific research in virtually every scientific discipline. Argonne researchers work closely with researchers from hundreds of companies, universities, and federal, state and municipal agencies to help them solve their specific problems, advance America's scientific leadership and prepare the nation for a better future. With employees from more than 60 nations, Argonne is supported by the Office of Science of the U.S. Department of Energy. The Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov.

SLAC is a multi-program laboratory exploring frontier questions in photon science, astrophysics, particle physics and accelerator research. Located in Menlo Park, Calif., SLAC is operated by Stanford University for the U.S. Department of Energy's Office of Science.

SLAC National Accelerator Laboratory is supported by the Office of Science of the U.S. Department of Energy. The Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov

Tona Kunz | EurekAlert!

Further reports about: Energy SLAC Ultrafast X-ray X-ray pulse XFEL atomic resolution basic research complex systems ionization

More articles from Physics and Astronomy:

nachricht First chip-scale broadband optical system that can sense molecules in the mid-IR
24.05.2018 | Columbia University School of Engineering and Applied Science

nachricht Nuclear physicists leap into quantum computing with first simulations of atomic nucleus
24.05.2018 | DOE/Oak Ridge National Laboratory

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

When corals eat plastics

24.05.2018 | Ecology, The Environment and Conservation

Surgery involving ultrasound energy found to treat high blood pressure

24.05.2018 | Medical Engineering

First chip-scale broadband optical system that can sense molecules in the mid-IR

24.05.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>