Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ultrafast imaging of complex systems in 3-D at near atomic resolution becoming increasingly possible

18.12.2014

It is becoming possible to image complex systems in 3-D with near-atomic resolution on ultrafast timescales using extremely intense X-ray free-electron laser (XFEL) pulses.

One important step toward ultrafast imaging of samples with a single X-ray shot is understanding the interaction of extremely brilliant and intense X-ray pulses with the sample, including ionization rates.

Scientists from the U.S. Department of Energy's Argonne National Laboratory and SLAC National Accelerator Laboratory developed an extended Monte Carlo computational scheme that for the first time includes bound-bound resonant excitations that dramatically enhance ionization rates and can lead to an unexpectedly high degree of electron stripping.

The extended computation scheme addresses a daunting challenge for the standard rate equation approach – managing the exponentially large number of electron configurations that can occur when one or more excitations occur. The scheme computes atomic data only on demand, that is, when a specific electronic configuration is accessed.

"This strategy allows for a natural and efficient way to identify the most probable path through the quadrillions of electronic configurations to the final state," Argonne Distinguished Fellow Linda Young said.

With the extended Monte Carlo rate equation (MCRE) model, the researchers studied the ionization dynamics of argon atoms that received a 480-electronvolt XFEL pulse, in which the resonance-enhanced X-ray multiple ionization mechanism was critical to generating otherwise inaccessible charge states.

“Based on the computer simulations, we can now understand the very efficient ionization of our samples beyond what was previously believed to be the physical limit,” said Christoph Bostedt, a senior staff scientist at SLAC. “Understanding the process gives you the means to control it.”

XFEL imaging capability relies on the diffract-before-destroy concept, in which a high-fluence, ultrashort X-ray pulse generates a diffraction pattern prior to Coulomb explosion; reconstruction of many such patterns will render a 3-D model.

Due to the massive number of electronic rearrangements – ranging into the billions and beyond – during the femtosecond X-ray pulse, it is important to gain a deep understanding of the dynamic response individual atoms have to intense X-ray pulses.

With the extended MCRE approach scientists not only gained the first theoretical verification of resonance-enhanced multiple ionization (REXMI) pathways for inner-shell ionization dynamics of argon atoms, but also verified the REXMI mechanism for previously observed ultra-efficient ionization in krypton and xenon.  The extended MCRE scheme makes possible the theoretical exploration of resonant high-intensity X-ray physics.

Hard XFEL pluses, such as those available at SLAC’s Linac Coherent Light Source (LCLS) where this experiment was conducted, provide unparalleled opportunities to characterize, down to the atomic level, complex systems on ultrafast time scales.

This research was funded by the U.S Department of Energy's Office of Science, Office of Basic Energy Sciences. The LCLS is a DOE Office of Science User Facility.

Phay Ho and Linda Young of Argonne and Christoph Bostedt and Sebastian Schorb of SLAC developed the extended Monte Carlo rate equation approach.

Also see "Theoretical Tracking of Resonance-Enhanced Multiple Ionization Pathways in X-Ray Free-Electron Laser Pulses" at the Physical Review Letters website.

Argonne National Laboratory seeks solutions to pressing national problems in science and technology. The nation's first national laboratory, Argonne conducts leading-edge basic and applied scientific research in virtually every scientific discipline. Argonne researchers work closely with researchers from hundreds of companies, universities, and federal, state and municipal agencies to help them solve their specific problems, advance America's scientific leadership and prepare the nation for a better future. With employees from more than 60 nations, Argonne is supported by the Office of Science of the U.S. Department of Energy. The Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov.

SLAC is a multi-program laboratory exploring frontier questions in photon science, astrophysics, particle physics and accelerator research. Located in Menlo Park, Calif., SLAC is operated by Stanford University for the U.S. Department of Energy's Office of Science.

SLAC National Accelerator Laboratory is supported by the Office of Science of the U.S. Department of Energy. The Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov

Tona Kunz | EurekAlert!

Further reports about: Energy SLAC Ultrafast X-ray X-ray pulse XFEL atomic resolution basic research complex systems ionization

More articles from Physics and Astronomy:

nachricht New type of smart windows use liquid to switch from clear to reflective
14.12.2017 | The Optical Society

nachricht New ultra-thin diamond membrane is a radiobiologist's best friend
14.12.2017 | American Institute of Physics

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Plasmonic biosensors enable development of new easy-to-use health tests

14.12.2017 | Health and Medicine

New type of smart windows use liquid to switch from clear to reflective

14.12.2017 | Physics and Astronomy

BigH1 -- The key histone for male fertility

14.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>